Design of Flexible Rods with Embedded SMA Actuators

Author(s):  
H. J. Pfaeffle ◽  
Dimitris C. Lagoudas ◽  
Iradj Tadjbakhsh ◽  
Kevin C. Craig
Keyword(s):  
1993 ◽  
Author(s):  
H. J. Pfaeffle ◽  
Dimitris C. Lagoudas ◽  
Iradj G. Tadjbakhsh ◽  
Kevin C. Craig
Keyword(s):  

1965 ◽  
Vol 25 (3) ◽  
pp. 77-97 ◽  
Author(s):  
L. Kolehmainen ◽  
H. Zech ◽  
D. von Wettstein

The submicroscopic organization of mesophyll cells from tobacco leaves systemically infected with tobacco mosaic virus (TMV) is described. After fixation with glutaraldehyde and osmium tetroxide the arrangement of the TMV particles within the crystalline inclusions is well preserved. Only the ribonucleic acid-containing core of the virus particles is visible in the micrographs. Besides the hexagonal virus crystals, several characteristic types of "inclusion bodies" are definable in the cytoplasm: The so-called fluid crystals seem to correspond to single layers of oriented TMV particles between a network of the endoplasmic reticulum and ribosomes. Unordered groups or well oriented masses of tubes with the diameter of the TMV capsid are found in certain areas of the cytoplasm. A complicated inclusion body is characterized by an extensively branched and folded part of the endoplasmic reticulum, containing in its folds long aggregates of flexible rods. Certain parts of the cytoplasm are filled with large, strongly electron-scattering globules, probably of lipid composition. These various cytoplasmic differentiations and the different forms of presumed virus material are discussed in relation to late stages of TMV reproduction and virus crystal formation.


Author(s):  
Hyung-min Son ◽  
Jun-bum Gu ◽  
Se-hoon Park ◽  
Yun-jung Lee ◽  
Tae-hyun Nam

Author(s):  
Md Mehedi Hasan ◽  
Theocharis Baxevanis

Shape Memory Alloy (SMA)-actuators are efficient, simple, and robust alternatives to conventional actuators when a small volume and/or large force and stroke are required. The analysis of their failure response is critical for their design in order to achieve optimum functionality and performance. Here, (i) the existing knowledge base on the fatigue and overload fracture response of SMAs under actuation loading is reviewed regarding the failure micromechanisms, empirical relations for actuation fatigue life prediction, experimental measurements of fracture toughness and fatigue crack growth rates, and numerical investigations of toughness properties and (ii) future developments required to expand the acquired knowledge, enhance the current understanding, and ultimately enable commercial applications of SMA-actuators are discussed.


Author(s):  
Sven Langbein ◽  
Alexander Czechowicz

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. Therefore, a need of developing methods, standardized testing of empirical properties and computer aided simulation tools is motivated. While computer-aided approaches have been discussed in further papers, as well as standardization potentials of SMA actuators, this paper focuses on a developing method for SMA actuators. The main part of the publication presents the logical steps which have to be passed, in order to develop an SMA actuator, considering several options like mechanical, thermal, and electrical options. As a result of the research work, the paper proves this method by one example in the field of SMA-valve technology.


Sign in / Sign up

Export Citation Format

Share Document