The Effect of Welding Consumables on Arc Welding Process Control and Weld Metal Structure and Properties

1998 ◽  
Author(s):  
David L. Olson ◽  
Robert H. Frost
2007 ◽  
Author(s):  
A. Cobo ◽  
J. Mirapeix ◽  
O. M. Conde ◽  
P. B. García-Allende ◽  
F. J. Madruga ◽  
...  

Author(s):  
K. C. Kim ◽  
J. T. Kim ◽  
J. I. Suk ◽  
H. K. Kwon ◽  
U. H. Sung ◽  
...  

In order to apply leak before break (LBB) design for nuclear primary piping systems, dynamic and static J-R tests of field fabrication weld metal were carried out to determine mechanical properties at 316°C. For the reactor coolant piping system made by SMAW (Shielded Metal Arc Welding) process of the SA508 Cl.1a, the variation of J-R fracture characteristics with the loading rate of 1mm/min and 1,000mm/min was examined to prevent the catastrophic break under seismic loading. In the J-R test results, the J-R curves at 1,000mm/min are about 60% higher than those at 1mm/min. It suggests that the welding joints of the reactor coolant piping may be susceptible to dynamic strain aging at 316°C. For the surge line piping made by GTAW (Gas Tungsten Arc Welding) process of the SA312 TP347, excellent static J-R properties are required because the nominal diameter of the pipe is relatively small size of 12 inch. In order to examine the effect of carbon content in the filler metal on the fracture toughness of its welded metal, weld metal specimens were made by using 3 kinds of filler metals whose carbon contents were 0.050, 0.030 and 0.025%, respectively. In the static J-R test results, weld metal made by one of three electrodes satisfied the LBB acceptance criteria. Much better J-R fracture characteristics with decreasing carbon content of filler metal can be shown.


2018 ◽  
Vol 927 ◽  
pp. 1-5 ◽  
Author(s):  
Alexander D. Razmyshlyaev ◽  
Marina V. Ahieieva ◽  
Elena V. Lavrova

The transverse magnetic field (TMF) use allows to obtain follow effects: increasing the electrode melting coefficient, reducing the base metal penetration depth and grinding the weld metal structural components. The paper analyzed the existing literature data about the TMF influence on the refinement of the weld metal structure. It is experimentally shown that the alternating TMF influence of 6 Hz frequency reduces the grain size of weld metal is almost twice in comparison with the welding process without the TMF influence at submerged arc welding of plates of austenitic steel type 12X18H9T (X10CrNiTi18-9). The average grains size is 7-6 index, when welding without the TMF influence and the average grains size of the weld metal corresponds to 8 index, with separate inclusions of grains with 7 index when welding with the TMF influence. This is should increase the yield strength value of the weld metal in accordance with the data of Hall – Petch.


2020 ◽  
Vol 19 (02) ◽  
pp. 277-289
Author(s):  
Sumit Saini ◽  
Kulwant Singh

Protection of environment from industrialization and urbanization waste is the prime duty of engineers and researchers. Elimination of industrial waste completely is not possible because it is generally a byproduct of the process. It can be minimized by recycling or reusing. In this research, waste slag generated by steel plant is recycled as a useful flux for submerged arc welding. It is found that recycled slag is capable of producing acceptable weld bead geometry. The penetration achieved using recycled slag is 7.897[Formula: see text]mm, which is more than the penetration obtained using fresh flux, i.e. 6.027[Formula: see text]mm. The reinforcement produced by recycled slag is 2.632[Formula: see text]mm, which is close to the reinforcement obtained using fresh flux. It is further observed that chemistry of weld metal deposited using recycled slag is also at par with that of weld metal produced using fresh original flux. The amount of carbon present in weld metal produced by recycled slag is 0.15%, which is comparable to the percentage of carbon present in weld metal produced using fresh flux. The microstructure and microhardness obtained using recycled slag are also comparable with the microstructure and microhardness obtained using fresh flux. This research established the feasibility of recycling slag as a flux required for submerged arc welding process.


Sign in / Sign up

Export Citation Format

Share Document