Space Particle Modeling, Measurements, and Effects: Compact Environmental Anomaly Sensor (CEASE) Proton Calibration

2011 ◽  
Author(s):  
Bronislaw K. Dichter ◽  
Edward G. Mullen ◽  
Gary E. Galica
Keyword(s):  
2014 ◽  
Vol 1 ◽  
pp. 324-327 ◽  
Author(s):  
Keisuke Nagata ◽  
Wataru Nakashima ◽  
Hisato Fujisaka ◽  
Takeshi Kamio ◽  
Kazuhisa Haeiwa

2021 ◽  
Vol 9 (8) ◽  
pp. 795
Author(s):  
Seongbong Seo ◽  
Young-Gyu Park

A coastal wave buoy was lost near Jeju Island, Korea, in late July 2014 and found at Cape Mendocino, USA, in April 2020. The buoy’s journey was simulated with a Lagrangian particle tracking model using surface ocean currents and wind data at 10 m above sea level. Experiments were conducted with windage values of 0, 2, and 4%. Particles were released along the southern coast of Jeju Island from 31 July to 8 August 2014. When the windage was 0 or 2%, most particles reached the northwest Pacific via the East/Japan Sea or East China Sea, respectively. With 4% windage, very few particles entered the North Pacific. Under 0% windage, particles accumulated in the Great Pacific Garbage Patch (GPGP) and never reached the USA. Under 2%, particles were able to escape the GPGP and started to reach the USA coast 2 years and 7 months after the release. The trajectory of the buoy was deduced from the trajectories of particles with a similar travel time. The buoy likely moved to East China and then to the subtropical convergence zone, where it must have circulated for approximately 2 years before being pushed toward Cape Mendocino by the intensified winter westerlies.


Author(s):  
Ranvir Dhillon ◽  
Moustafa El-Gindy ◽  
Rustam Ali ◽  
David Philipps ◽  
Fredrik Öijer ◽  
...  

The rapid progression of computational power and development of non-mesh particle modeling techniques provides solutions to problems which are not accurately modeled using traditional finite element analysis techniques. The field of soft soil modeling has been pressing on in recent years and the smoothed particle hydrodynamics (SPH) modeling method in PAM-CRASH provides opportunity for further advancement in accuracy. This research focuses on the development of soft soil models using SPH with verification using pressure-sinkage and shear strength criterion. Soil model parameters such as geometry and contact model are varied to determine the effect of the parameters on the behaviour of the soft soil and relationships are developed. The developed virtual soil models are compared against existing soils to determine which soils are accurately modeled and further refinements are made to validate the models with existing empirical data.


Author(s):  
Yu Feng ◽  
Clement Kleinstreuer

Fine to ultrafine materials, such as spherical particles and fibers with their diverse applications ranging from cosmetics, cleaners and composites to nanomedicine are increasingly ubiquitous in the air we breathe. For example, the unique lung deposition patterns of nanoparticles and their ease-of-migration into the blood stream may cause severe health problems, as discussed by Oberdoerster et al. (2005). In contrast, multifunctional nanoparticles as well as micron fibers are also being used as drug carriers for cancer treatment (Zhang et al., 2011). While the transport and deposition of spherical nanoparticles has been analyzed (Kleinstreuer and Zhang, 2010; among others), the fate of ellipsoidal particles in subject-specific lung airways has hardly been addressed. In this study, the Euler-Lagrange fluid-particle modeling approach (i.e., the Discrete Phase Method solver) has been employed in Fluent 13.0 (ANSYS, Canonsburg, PA). User-supplied C-programs have been added to simulate ellipsoidal fibers transport and orientation effects. The computer simulation model has been validated for fiber transport and deposition in a circular tube (Tian et al., 2012). Additionally, transitional airflow patterns were analyzed and local deposition efficiencies compared for spherical particles and fibers in a realistic human respiratory system. The capability of ellipsoidal fibers migrating into deeper lung regions was indicated and fiber deposition “hot spots” were discussed. The numerical results expand the basic understanding of the dynamics of non-spherical particles in realistic shear flows, and can be used to investigate the fate of inhaled toxic or therapeutic materials.


2018 ◽  
Vol 51 (12) ◽  
pp. 3963-3981 ◽  
Author(s):  
Weixin Li ◽  
Xinwei Zhou ◽  
J. William Carey ◽  
Luke P. Frash ◽  
Gianluca Cusatis

2019 ◽  
Vol 364 ◽  
pp. 449-456 ◽  
Author(s):  
K. Bobzin ◽  
M. Öte ◽  
M.A. Knoch ◽  
I. Alkhasli

Author(s):  
Jinghai Li ◽  
Wei Ge ◽  
Wei Wang ◽  
Ning Yang ◽  
Xinhua Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document