Space-Based Three-Dimensional Imaging of Equatorial Plasma Bubbles: Advancing the Understanding of Ionospheric Density Depletions and Scintillation

2012 ◽  
Author(s):  
Joseph M. Comberiate
2021 ◽  
Vol 6 (24) ◽  
pp. 152-160
Author(s):  
Siti Syukriah Khamdan ◽  
Tajul Ariffin Musa ◽  
Suhaila M. Buhari

This paper presents the detection of the equatorial plasma bubbles (EPB) using the Global Positioning System (GPS) ionospheric tomography method over Peninsular Malaysia. This paper aims to investigate the capability of the GPS ionospheric tomography method in detecting the variations of the EPB over the study area. In doing so, a previous case study during post-sunset 5th April 2011 has been selected as a reference for the detection of the EPBs over the study area. It has been observed that at least three structures of the EPBs have been captured based on the rate of change total electron content (TEC) index (ROTI) from 12 UT until 19 UT. Therefore, the three-dimensional ionospheric profiles have been reconstructed over Peninsular Malaysia using the tomography method during the study period in order to capture the signature of the EPBs. In this study, the detection of the EPBs using the tomography method is based on the rate of change of electron density (ROTNe). The results from three-dimensional ionospheric tomography show only two structures of EPBs are detected during the study period. It has been observed that the ROTNe depleted up to ~-12x109el/cm. Overall, the results in this study show that the GPS ionospheric tomography capable to be utilized in detecting the variations of EPBs in support of ionospheric studies and monitoring in the Malaysian region.


2015 ◽  
Vol 33 (1) ◽  
pp. 129-135 ◽  
Author(s):  
J. Park ◽  
H. Lühr ◽  
M. Noja

Abstract. Total electron content (TEC) between Low-Earth-Orbit (LEO) satellites and the Global Navigation Satellite System (GNSS) satellites can be used to constrain the three-dimensional morphology of equatorial plasma bubbles (EPBs). In this study we investigate TEC measured onboard the Challenging Minisatellite Payload (CHAMP) from 2001 to 2005. We only use TEC data obtained when CHAMP passed through EPBs: that is, when in situ plasma density measurements at CHAMP altitude also show EPB signatures. The observed TEC gradient along the CHAMP track is strongest when the corresponding GNSS satellite is located equatorward and westward of CHAMP with elevation angles of about 40–60°. These elevation and azimuth angles are in agreement with the angles expected from the morphology of the plasma depletion shell proposed by Kil et al.(2009).


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

Author(s):  
Lukas Helfen ◽  
Thilo F. Morgeneyer ◽  
Feng Xu ◽  
Mark N. Mavrogordato ◽  
Ian Sinclair ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document