Impact of Terrain Features for Tactical Network Connectivity

2013 ◽  
Author(s):  
David Tate ◽  
Lance Joneckis ◽  
John Fregeau ◽  
Corinne Kramer ◽  
David Sparrow

2012 ◽  
Author(s):  
Rosemarie Kluetsch ◽  
Tomas Ros ◽  
Jean Theberge ◽  
Paul Frewen ◽  
Christian Schmahl ◽  
...  


2012 ◽  
Vol 43 (01) ◽  
Author(s):  
A Dovern ◽  
GR Fink ◽  
ACB Fromme ◽  
AM Wohlschläger ◽  
PH Weiss-Blankenhorn ◽  
...  
Keyword(s):  


2014 ◽  
Vol 45 (01) ◽  
Author(s):  
C Nettekoven ◽  
LJ Volz ◽  
M Kutscha ◽  
SB Eickhoff ◽  
C Grefkes


Author(s):  
Antanas DUMBRAUSKAS ◽  
Nijolė BASTIENĖ ◽  
Petras PUNYS

GIS-based approach to find the suitable sites for surface flow constructed wetlands was employed for the Lithuanian river basins with low ecological status. According to the nature of the analysed criteria the flowchart consists of two phases. Criteria used include hydrographical network, soil properties, terrain features, land use, etc. Some of them have strictly defined values (constraints), and other ranges within certain limits (factors). Limited criteria were analysed using rejection principle and influencing factors using proximity analysis and overlay methods. Selecting the potential sites using standard GIS analysis tools there was estimated about 3286 sites for possible wetlands with the mean area of inflow basin about 4 km2 in the basins of water bodies at risk.



Author(s):  
Krittika Singh

The Internet of things is the internetworking of physical devices, vehicles, buildings, and other items—embedded with electronics, software, sensors, actuators, and network connectivity that enable these objects to collect and exchange data. The IoT allows objects to be sensed and/or controlled remotely across existing network infrastructure, creating opportunities for more direct integration of the physical world into computer-based systems, and resulting in improved efficiency, accuracy and economic benefit in addition to reduced human intervention. In this research an expert system based upon the IOT is developed in which the next event in the flight schedules due to any kind of medical emergencies is to be predicted. For this the medical data of all the patients are to be collected through WBAN.



Author(s):  
Umesh Banodha ◽  
Praveen Kumar Kataria

Cloud is an emerging technology that stores the necessary data and electronic form of data is produced in gigantic quantity. It is vital to maintain the efficacy of this data the need of data recovery services is highly essential. Cloud computing is anticipated as the vital foundation for the creation of IT enterprise and it is an impeccable solution to move databases and application software to big data centers where managing data and services is not completely reliable. Our focus will be on the cloud data storage security which is a vital feature when it comes to giving quality service. It should also be noted that cloud environment comprises of extremely dynamic and heterogeneous environment and because of high scale physical data and resources, the failure of data centre nodes is completely normal.Therefore, cloud environment needs effective adaptive management of data replication to handle the indispensable characteristic of the cloud environment. Disaster recovery using cloud resources is an attractive approach and data replication strategy which attentively helps to choose the data files for replication and the strategy proposed tells dynamically about the number of replicas and effective data nodes for replication. Thus, the objective of future algorithm is useful to help users together the information from a remote location where network connectivity is absent and secondly to recover files in case it gets deleted or wrecked because of any reason. Even, time oriented problems are getting resolved so in less time recovery process is executed.



Sign in / Sign up

Export Citation Format

Share Document