Anger-brain-body link variability: the interplay between salience-action network connectivity and individual differences in dispositional affective styles.

Author(s):  
Viridiana Mazzola
2017 ◽  
Vol 29 (5) ◽  
pp. 827-836 ◽  
Author(s):  
Chenjie Xia ◽  
Alexandra Touroutoglou ◽  
Karen S. Quigley ◽  
Lisa Feldman Barrett ◽  
Bradford C. Dickerson

Individual differences in arousal experience have been linked to differences in resting-state salience network connectivity strength. In this study, we investigated how adding task-related skin conductance responses (SCR), a measure of sympathetic autonomic nervous system activity, can predict additional variance in arousal experience. Thirty-nine young adults rated their subjective experience of arousal to emotionally evocative images while SCRs were measured. They also underwent a separate resting-state fMRI scan. Greater SCR reactivity (an increased number of task-related SCRs) to emotional images and stronger intrinsic salience network connectivity independently predicted more intense experiences of arousal. Salience network connectivity further moderated the effect of SCR reactivity: In individuals with weak salience network connectivity, SCR reactivity more significantly predicted arousal experience, whereas in those with strong salience network connectivity, SCR reactivity played little role in predicting arousal experience. This interaction illustrates the degeneracy in neural mechanisms driving individual differences in arousal experience and highlights the intricate interplay between connectivity in central visceromotor neural circuitry and peripherally expressed autonomic responses in shaping arousal experience.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242985
Author(s):  
Howard Muchen Hsu ◽  
Zai-Fu Yao ◽  
Kai Hwang ◽  
Shulan Hsieh

The ability to inhibit motor response is crucial for daily activities. However, whether brain networks connecting spatially distinct brain regions can explain individual differences in motor inhibition is not known. Therefore, we took a graph-theoretic perspective to examine the relationship between the properties of topological organization in functional brain networks and motor inhibition. We analyzed data from 141 healthy adults aged 20 to 78, who underwent resting-state functional magnetic resonance imaging and performed a stop-signal task along with neuropsychological assessments outside the scanner. The graph-theoretic properties of 17 functional brain networks were estimated, including within-network connectivity and between-network connectivity. We employed multiple linear regression to examine how these graph-theoretical properties were associated with motor inhibition. The results showed that between-network connectivity of the salient ventral attention network and dorsal attention network explained the highest and second highest variance of individual differences in motor inhibition. In addition, we also found those two networks span over brain regions in the frontal-cingulate-parietal network, suggesting that these network interactions are also important to motor inhibition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline M. Kelsey ◽  
Katrina Farris ◽  
Tobias Grossmann

Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants (M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigating developmental trajectories in typical and atypical neurodevelopment.


2019 ◽  
Author(s):  
Uzma Nawaz ◽  
Ivy Lee ◽  
Adam Beermann ◽  
Shaun Eack ◽  
Matcheri Keshavan ◽  
...  

AbstractBackgroundResting state fMRI (rsfMRI) demonstrates that the brain is organized into distributed networks. Numerous studies have examined links between psychiatric symptomatology and network functional connectivity. Traditional rsfMRI analyses assume that the spatial organization of networks is invariant between individuals. This dogma has recently been overturned by the demonstration that networks show significant variation between individuals. We tested the hypothesis that previously observed relationships between schizophrenia negative symptom severity and network connectivity are actually due to individual differences in network spatial organization.Methods44 participants diagnosed with schizophrenia underwent rsfMRI scans and clinical assessments. A multivariate pattern analysis determined how whole brain functional connectivity correlates with negative symptom severity at the individual voxel level.ResultsBrain connectivity to a region of the right dorso-lateral pre-frontal cortex correlates with negative symptom severity. This finding results from individual differences in the topographic distribution of two networks: the default mode network (DMN) and the task positive network (TPN). Both networks demonstrate strong (r∼0.49) and significant (p<0.001) relationships between topography and symptom severity. For individuals with low symptom severity, this critical region is part of the DMN. In highly symptomatic individuals, this region is part of the TPN.ConclusionPreviously overlooked individual variation in brain organization is tightly linked to differences in schizophrenia symptom severity. Recognizing critical links between network topography and pathological symptomology may identify key circuits that underlie cognitive and behavioral phenotypes. Individual variation in network topography likely guides different responses to clinical interventions that rely on anatomical targeting (e.g. TMS).


2019 ◽  
Author(s):  
Ashvanti Valji ◽  
Alisa Priemysheva ◽  
Carl J. Hodgetts ◽  
Alison G. Costigan ◽  
Greg D. Parker ◽  
...  

AbstractAcross the lifespan, curiosity motivates us to learn, yet curiosity varies strikingly between individuals. Such individual differences have been shown for two distinct dimensions of curiosity: epistemic curiosity (EC), the desire to acquire conceptual knowledge, and perceptual curiosity (PC), the desire for sensory information. It is not known, however, whether both dimensions of curiosity depend on different brain networks and whether inter-individual differences in curiosity depend on variation in anatomical connectivity within these networks. Here, we investigated the neuroanatomical connections underpinning individual variation in trait curiosity. Fifty-one female participants underwent a two-shell diffusion MRI sequence and completed questionnaires measuring EC and PC. Using deterministic spherical deconvolution tractography we extracted microstructural metrics (fractional anisotropy (FA) and mean diffusivity (MD)) from two key white matter tracts: the fornix (implicated in novelty processing, exploration, information seeking and episodic memory) and the inferior longitudinal fasciculus (ILF) (implicated in semantic learning and memory). In line with our predictions, we found that EC – but not PC – correlated with ILF microstructure. Fornix microstructure, in contrast, correlated with both EC and PC, with posterior hippocampal fornix fibres - associated with posterior hippocampal network connectivity - linked to PC specifically. These findings suggest that differences in distinct dimensions of curiosity map systematically onto specific white matter tracts underlying well characterized brain networks. Furthermore, the results pave the way to study the anatomical substrates of inter-individual differences in dimensions of trait curiosity that motivate the learning of distinct forms of knowledge and skills.


2021 ◽  
Author(s):  
Michael I Demidenko ◽  
Edward Huntley ◽  
Alexander Samuel Weigard ◽  
Daniel Keating ◽  
Adriene M. Beltz

Adolescent risk-taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent network connectivity–let alone examinations of its links to SS behavior. The studies that have been done focus on mean-based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person-specific approach to the study of adolescent functional connectivity during reward processing, and to examine links between connectivity and self-reported SS behavior in 104 adolescents (MAge=19.3; SDAge=1.3). Using group iterative multiple model estimation (GIMME), person-specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data-driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward-related regions had greater SS and showed a distinctive relation between connectivity strength in the reward network and SS. These findings provide novel evidence for heterogeneity in adolescent brain-behavior relations by showing that subsets of adolescents have unique associations between neural reward processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain-behavior relations may attenuate across runs.


2018 ◽  
Vol 9 ◽  
Author(s):  
Andrew E. Reineberg ◽  
Daniel E. Gustavson ◽  
Chelsie Benca ◽  
Marie T. Banich ◽  
Naomi P. Friedman

2016 ◽  
Author(s):  
Yuan Zhou ◽  
Jie Chen ◽  
Yu L.L. Luo ◽  
Dang Zheng ◽  
Li-Lin Rao ◽  
...  

AbstractThe association between in-scanner head motion and intrinsic functional connectivity (iFC) may confound explanations for individual differences in functional connectomics. However, the etiology of the correlation between head motion and iFC has not been established. This study aimed to investigate genetic and environmental contributions on the association between head motion and iFC using a twin dataset (175 same-sex twin pairs, aged 14-23 years, 48% females). After establishing that both head motion and default network iFC are moderately heritable, we found large genetic correlations (-0.52 to -0.73) between head motion and the default network iFCs. Common genes can explain 48% - 61% of the negative phenotypic correlation between the two phenotypes. These results advance our understanding of the relationship between head motion and iFC, and may have profound implications for interpreting individual differences in default network connectivity in clinical research and brain-behavior association.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yin Du ◽  
Yinan Wang ◽  
Mengxia Yu ◽  
Xue Tian ◽  
Jia Liu

Fear of punishment prompts individuals to conform. However, why some people are more inclined than others to conform despite being unaware of any obvious punishment remains unclear, which means the dispositional determinants of individual differences in conformity propensity are poorly understood. Here, we explored whether such individual differences might be explained by individuals’ stable neural markers to potential punishment. To do this, we first defined the punishment network (PN) by combining all potential brain regions involved in punishment processing. We subsequently used a voxel-based global brain connectivity (GBC) method based on resting-state functional connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-network connectivity (WNC) of each voxel in the PN of 264 participants to explain their tendency to conform by using a conformity scale. We found that a stronger WNC in the right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-phase ascending pathway, contributing to conformity propensity at every phase. Thus, our results suggest that task-independent spontaneous connectivity in the PN could predispose individuals to conform.


2020 ◽  
Author(s):  
Caroline M. Kelsey ◽  
Katrina Farris ◽  
Tobias Grossmann

AbstractVariability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in newborn infants (N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants’ negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging traits.


Sign in / Sign up

Export Citation Format

Share Document