scholarly journals Palmette-leader and Central-leader Tree Forms Compared for Light Distribution, Productivity, and Fruit Quality of `McIntosh' Apple Trees

HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1386-1388 ◽  
Author(s):  
D.C. Elfving ◽  
I. Schechter ◽  
R.A. Cline ◽  
W.F. Pierce

Mature `Macspur McIntosh'/MM.106 apple trees (Malus domestica Borkh.) trained to the central-leader (CL) tree form were converted to the palmette-leader (PL) tree form in 1987 by removal of east- and west-oriented scaffolds in the upper canopy. Control trees were pruned to maintain the CL form. Dormant pruning in subsequent seasons maintained either tree form. No summer pruning was done. Canopy light levels along horizontal transects 1 m above the soil and vertical transects, both through the center of the canopy, were unaffected by tree form or transect direction. Yields were significantly lower for PL trees in 1987 and 1989, while yield efficiency was reduced in PL trees in all 3 years. Fruit size, trunk cross-sectional area growth, and foliar macronutrient content were unaffected by tree form. Fruit color development in both the upper and lower halves of the canopy was not influenced by tree form during the study.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1122b-1122
Author(s):  
D.C. Elfving ◽  
I. Schechter ◽  
R.A. Cline ◽  
W.F. Pierce

Mature `Macspur McIntosh'/MM.106 trees trained to the CL tree form were converted to the PL tree form in 1987 by removal of east- and west-oriented upper scaffold limbs. Control trees were pruned to maintain the CL form. Dormant pruning in later years maintained either tree form. No summer pruning was used in this study. Canopy light levels along horizontal transects at one m above the soil and vertical transects, both through the center of the canopy, were unaffected by tree form or transect direction. Yields were significantly lower for PL trees in 1987 and 1989, while yield efficiency was reduced in PL trees in all 3 years. Fruit size, trunk cross-sectional area, and foliar macro-nutrient content were unaffected by tree form during this study. Fruit color development in both the upper and lower halves of the canopy was uninfluenced by tree form.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 547d-547 ◽  
Author(s):  
Terence L. Robinson

`Empire'/M.9/MM.106 and `Ace Delicious'/MM.106 apple trees were planted in 1985 at three between row spacings (3.0 m, 4.25 m and 5.5 m) and were trained as either free standing central leaders or as Y-shaped hedgerows for 13 years. The Y hedgerow arms had varying angles from 40° to 80° above the horizontal. Final scaffold length, canopy volume, trunk cross-sectional area, and above-ground canopy weight were positively correlated to the angle of the Y arms. As the angle of the Y arms became more horizontal, the amount of growth removed during summer pruning increased. At the flattest angle (40° above horizontal), terminal growth of both cultivars ceased and excessive vertical sucker growth resulted. As the angle of the Y arms became more vertical, more terminal growth was obtained and less shoot growth had to be removed during summer pruning. Cumulative yields of the Y-shaped trees were generally greater than those of the central-leader-trained trees. Exceptions were the most horizontal and the most vertical canopy angles, which had the lowest yields. The relationship between angle of Y arms and yield showed a broad optimum between 50° and 70° above the horizontal. There was also a strong positive relationship between tree density and yield. `Empire' fruit size was smaller from the Y-shaped trees than from the central-leader trees. The optimum angles for fruit size were the intermediate angles. Fruit color was poorest on the flattest angles and best on the most-vertical angles. The best yield efficiency was at intermediate angles (50° 70°). This resulted in the best balance of vegetative growth and cropping.


1969 ◽  
Vol 49 (6) ◽  
pp. 655-658 ◽  
Author(s):  
R. G. Ross ◽  
A. D. Crowe ◽  
R. P. Longley

A five-year study was conducted on the effect of captan, dodine and dichlone on the performance of mature McIntosh apple trees. There were no significant differences in yield, trunk cross-sectional area, amount of bloom, fruit size and fruit color. Dodine injured 0.5% of the fruit in one year of the test and pre-cover sprays of dichlone caused some fruit russeting. The results indicate that any harmful effect of dichlone on yield occurs from pre-cover applications, or pre-cover followed by cover sprays.


1991 ◽  
Vol 116 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Terence L. Robinson ◽  
Alan N. Lakso ◽  
Stephen G. Carpenter

A field planting of `Empire' and `Redchief Delicious' apple trees (Malus domestics Borkh.) was established in 1978 to evaluate four planting systems: 1) slender spindle/M.9, 2) Y-trellis/M.26, 3) central leader/M.9/MM.111, and 4) central leader/M.7a. During the first 5 years, yields per hectare for `Empire' were positively correlated with tree density. In the second 5 years, the Y-trellis/M.26 trees produced the highest yields while yields of the other systems continued to be related to tree density. Cumulative yields were highest with the Y-trellis/M.26 trees. With `Delicious', the Y-trellis/M.26 yields were greatest during all 10 years despite lower tree density than the slender spindle/M.9. Yields of `Delicious' with the other three systems were a function of tree density during the 10 years. At maturity, canopy volume per tree was greatest on the central leader/M.7a trees and smallest on the slender spindle/M.9 trees; however, there were no significant differences in canopy volume per hectare between the systems despite large differences in yield. Trunk cross sectional area (TCA) per hectare was greatest with the Y-trellis/M.26 trees and smallest with the central leader/M.7 trees. Yield was highly correlated to TCA/ha. Yield efficiency with `Empire' was greatest for the slender spindle/M.9 system, followed by the Y-trellis/M.26, central leader/M.9/MM.111, respectively. With both cultivars, the central leader/M.7a system had the lowest yield efficiency. With `Delicious', there were no differences in yield efficiency for the other three systems. The greater yield of the Y-trellis/M.26 system was the result of greater TCA/ha and not greater efficiency. `Empire' fruit size was largest on the central leader/M.7a and the central leader/M.9/MM.111 trees and smallest on the slender spindle/M.9 and the Y-trellis/M.26 trees. With `Delicious', fruit size was larger with the Y-trellis/M.26 trees than the other systems. When fruit size was adjusted for crop density, there were no significant differences due to system with `Empire', but with `Delicious' the Y-trellis/M.26 trees had larger adjusted fruit size than the other systems. Crop density calculated using TCA correlated better to fruit size than did crop density calculated using annual increase in TCA, canopy volume, or land area. Fruit color and quality with `Redchief Delicious' were not influenced by system. With `Empire', average fruit color and soluble solids content were lower for the Y-trellis/M.26 and slender spindle/M.9 in some years when canopy density was allowed to become. excessive.


HortScience ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 627-631 ◽  
Author(s):  
Cheryl R. Hampson ◽  
Harvey A. Quamme ◽  
Robert T. Brownlee

In 1993, a planting of virus-free 'Royal Gala' apple (Malu×domestica Borkh.) on 'M.9' rootstock was established at Summerland, B.C., Canada, to determine whether angled-canopy training systems could improve orchard tree performance relative to slender spindles. The trees were trained in one of five ways: slender spindle (SS), Geneva Y-trellis (GY), a modified Solen training we called 'Solen Y-trellis' (SY), or V-trellis (LDV), all at the same spacing (1.2 m × 2.8 m), giving a planting density of 2976 trees/ha. In addition, a higher density (7143 trees/ha) version of the V-trellis (HDV) was planted to gauge the performance of this system at densities approaching those of local super spindle orchards. The plots were drip-irrigated and hand-thinned. No summer pruning was done. After 8 years, differences among training systems at the same density and spacing were small and few. The two Y-shaped training systems had 11% to 14% greater cumulative yield/ha than the SS, but did not intercept significantly more light at maturity. No consistent differences occurred in fruit size or the percentage of fruit with delayed color development among the four training systems at the same density. Relative to the LDV, the HDV yielded less per tree, but far more per hectare, particularly in the first 3 years. After 8 years, the cumulative yield/ha was still 65% greater than with LDV. Yield efficiency was unaffected by tree density. Fruit size on HDV ranked lowest among the systems nearly every year, but was still commercially acceptable. The HDV intercepted more light (73%) than SS (53%). The percentage of fruit with delayed color development in HDV was not significantly different from that for LDV in most years. The trees in HDV were difficult to contain within their allotted space without summer pruning. The substantially similar performance of all the training systems (at a given density, and with minimal pruning) suggests that cost and ease of management should be the decisive factors when choosing a tree training method.


Author(s):  
Martin Mészáros ◽  
Luděk Laňar ◽  
Josef Sus ◽  
Jan Náměstek

The research was focused on the comparison of two pruning methods (winter pruning and winter + summer pruning) applied to apple trees trained to a standard and a modified slender spindle. The orchard of ‘Topaz’ trees, grafted on rootstock M 9, was planted in spring 2011. In the years 2013 – 2016, trunk cross sectional area (TCSA), crown volume, cumulative yields, yield efficiency, relative proportion of fruit size classes, number of cuts and dry matter of pruned wood were analyzed. The total growth intensity of the trees, measured by TCSA, was similar among the treatments. The trees of modified slender spindle had lower mean crown volume (2.751 – 2.765 m3) comparing to slender spindle with additional summer pruning (3.355 m3) and proved to better control the tree size. The modified slender spindle brought similar or slightly lower cumulative yields, but significantly higher proportion of good sized fruits (in categories above ř 70 mm) comparing to slender spindle. The pruning of modified spindle brings generally higher number of cuts removing a higher amount of woody biomass in comparison to slender spindle, regardless if combined with summer pruning. The additional summer pruning brought no beneficial effect in reduction of growth, fruit production and fruit size of the modified slender spindle.


1984 ◽  
Vol 64 (2) ◽  
pp. 361-368 ◽  
Author(s):  
J. WARNER ◽  
H. B. HEENEY ◽  
S. J. LEUTY ◽  
C. L. POTTER

A field experiment conducted over 12 yr showed virus inoculation with Spy decline, chlorotic leaf spot, stem pitting, rubbery wood and apple stem grooving viruses generally reduced tree size and yield of two strains of the McIntosh apple cultivar. Virus-inoculated trees flowered and fruited slightly ahead of uninoculated trees. Trees on Ottawa Hybrid (OH)-1, OH-5, Ottawa (0)-5, 0-7, 0-11 and Malus robusta Rehd. 5 rootstocks were the most sensitive to virus infection, while trees on OH-3, OH-4, OH-6 and O-3 were relatively tolerant to virus infection. Virus infection did not reduce yield efficiency (kilograms of fruit per unit of trunk cross sectional area). Fruit from trees inoculated with virus was generally smaller in size but had more red color than fruit from uninoculated trees.Key words: Malus domestica, Ottawa rootstocks, yield, tree size, fruit quality, virus sensitivity


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1169c-1169
Author(s):  
Curt R. Rom ◽  
Renae E. Moran

Trunk cross-sectional area (TCA) has been used to estimate leaf area (LA) and yield efficiency but variation in LA and TCA relationships have been unexplored. LA and TCA of 10-yr-old 'Starkspur Supreme Delicious' on 9 rootstocks (STKs) were measured in 1989. LA and TCA of 2-yr-old trees of 3 cultivars (CVs) on 5 STKs were measured in 1991. Regression of LA and TCA was performed for each CV, STK and each CV/STK. On mature trees, LA varied significantly with STK. The number and LA of shoot leaves (LVS) and spur LVS varied with STK but the % of total was not significantly different (approx. 52% spur LVS). The relationships of LA and TCA were linear for mature (r2=.94) and young (r2=.44) trees. On young trees, TCA varied with CV, but LA did not. Both LA and TCA were significantly different among STKs. The linear relationships of LA and TCA had unique intercepts with each CV, STK and CV/STK combination but slopes were not significantly different. Leaf area of Jonagold' and 'Gala' tended to increase more with increasing TCA than 'Empire'.


2002 ◽  
Vol 12 (1) ◽  
pp. 87-90 ◽  
Author(s):  
James R. Schupp ◽  
Esmaeil Fallahi ◽  
Ik-Jo Chun

Studies were initiated in Idaho and New York to determine the effects of Surround, a kaolin clay particle film product recently labeled as a crop protectant for agricultural crops, on fruit maturity and quality of `Fuji' and `Honeycrisp' apples (Malus×domestica) and fruit mineral concentration of `Fuji' apples. Surround reduced fruit weight, red color, and the incidence of sunburn of `Fuji' apples in Idaho. Sunburn did not occur on `Honeycrisp' in the New York study. In that study, Surround had no effect on fruit weight or red fruit color when applied in May and June but reduced fruit weight and red color when applied later. The reduction in red color development observed in both `Fuji' and `Honeycrisp' was not related to mineral nutrients or to a delay in fruit maturity. Surround applications resulted in undesirable residues in the basin and in the cavity of harvested fruit that were not satisfactorily removed by brushing on a commercial packing line. While effective for reducing sunburn, Surround was ineffective for increasing red fruit color of apples.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 645-648 ◽  
Author(s):  
D.C. Ferree ◽  
M. Knee

`Smoothee Golden Delicious' apple trees on nine rootstocks or interstems were mechanically root pruned annually for 9 years beginning the year after planting. Root pruning reduced trunk cross-sectional area (TCA) by 14% over the first 5 years and 22% in the last 4 years of the trial. Yield and fruit size were reduced by root pruning in most years with the fruit size effect obvious in June at the end of cell division. Interstem trees of MAC.9/MM.106 were larger than trees on M.9 and the following interstems: M.9/MM.106, M.9/MM.111, M.27/MM.111. Trees on seedling (SDL) rootstock were the largest and had the lowest yield per unit TCA and lower cumulative yield/tree than trees on M.7, MM.106, and MM.1ll. There was no interaction for any measure of growth or yield between root pruning and rootstock or interstem.


Sign in / Sign up

Export Citation Format

Share Document