scholarly journals Comparison of Capsicum annuum and C. pubescens for Antixenosis as a Means of Aphid Resistance

HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 1017-1018 ◽  
Author(s):  
Paul W. Bosland ◽  
John J. Ellington

Accessions of Capsicum annuum L., a susceptible host, and C. pubescens (R. & P.), a resistant host, were grown in a replicated greenhouse study to test whether antixenosis (nonpreference), antibiosis, or both was the mechanism for resistance to green peach aphid [Myzus persicae (Sulzer)]. A plant choice experiment established that aphids preferred C. annuum to C. pubescens. A no-plant choice test was not undertaken; nevertheless, the aphid's reproductive rates were measured in leaf containment cages and were similar on both hosts. The mechanism of antibiosis was not indicated because fecundity was not reduced in the containment cages; however, other measures of antibiosis were not studied. These observations suggest that antixenosis may be functioning in C. pubescens.

Author(s):  
Jiamei Li ◽  
Aravind L. Galla ◽  
Carlos Augusto Avila ◽  
Kaitlin Flattmann ◽  
Kaleb L. Vaughn ◽  
...  

Fatty acid desaturases (FADs) in plants influence levels of susceptibility to multiple stresses, including insect infestations. In this study, infestations of the greAtFABen peach aphid (Myzus persicae) on Arabidopsis thaliana were reduced by mutations in three desaturases: FAB2/SSI2, which encodes a chloroplastic stearoyl-[acyl-carrier-protein] 9-desaturase, and AtFAD7 or AtFAD3, which encode ω-3 FADs in the chloroplast and endoplasmic reticulum (ER) respectively. These data indicate that certain FADs promote susceptibility to aphids, and that aphids are impacted by desaturases in both the chloroplast and ER. Aphid resistance in ssi2, fad3, and/or fad7 might involve altered signaling between these subcellular compartments. C18:1 levels are depleted in ssi2, whereas C18:2 accumulation is enhanced in fad3 and fad7. In contrast, fad8 has higher than normal C18:2 levels but also high C18:1 and low C18:0, and does not impact aphid numbers. Potentially, aphids may be influenced by the balance of multiple fatty acids (FAs) rather than by a single species, with C18:2 promoting aphid resistance and C18:1 promoting susceptibility. Although the fad7 mutant also accumulates higher-than-normal levels of C16:2, this FA does not contribute to aphid resistance because a triple mutant line that lacks detectable levels of C16:2 (fad2fad6fad7) retains comparable levels of aphid resistance as fad7. In addition, aphid numbers are unaffected by the fad5 mutation that inhibits C16:1 synthesis. Together, these results demonstrate that certain FADs are important susceptibility factors in plant-aphid interactions, and that aphid resistance is more strongly associated with differences in C18 abundance than C16 abundance.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Victoria Florencio-Ortiz ◽  
Susana Sellés-Marchart ◽  
José L. Casas

Abstract Background Aphid attack induces defense responses in plants activating several signaling cascades that led to the production of toxic, repellent or antinutritive compounds and the consequent reorganization of the plant primary metabolism. Pepper (Capsicum annuum L.) leaf proteomic response against Myzus persicae (Sulzer) has been investigated and analyzed by LC-MS/MS coupled with bioinformatics tools. Results Infestation with an initially low density (20 aphids/plant) of aphids restricted to a single leaf taking advantage of clip cages resulted in 6 differentially expressed proteins relative to control leaves (3 proteins at 2 days post-infestation and 3 proteins at 4 days post-infestation). Conversely, when plants were infested with a high density of infestation (200 aphids/plant) 140 proteins resulted differentially expressed relative to control leaves (97 proteins at 2 days post-infestation, 112 proteins at 4 days post-infestation and 105 proteins at 7 days post-infestation). The majority of proteins altered by aphid attack were involved in photosynthesis and photorespiration, oxidative stress, translation, protein folding and degradation and amino acid metabolism. Other proteins identified were involved in lipid, carbohydrate and hormone metabolism, transcription, transport, energy production and cell organization. However proteins directly involved in defense were scarce and were mostly downregulated in response to aphids. Conclusions The unexpectedly very low number of regulated proteins found in the experiment with a low aphid density suggests an active mitigation of plant defensive response by aphids or alternatively an aphid strategy to remain undetected by the plant. Under a high density of aphids, pepper leaf proteome however changed significantly revealing nearly all routes of plant primary metabolism being altered. Photosynthesis was so far the process with the highest number of proteins being regulated by the presence of aphids. In general, at short times of infestation (2 days) most of the altered proteins were upregulated. However, at longer times of infestation (7 days) the protein downregulation prevailed. Proteins involved in plant defense and in hormone signaling were scarce and mostly downregulated.


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document