fatty acid desaturases
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 29)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yang XUAN ◽  
Mingo YUNG ◽  
Fushun Chen ◽  
Huogang WANG ◽  
Wai-Sun CHAN ◽  
...  

Abstract Malignant ascites in peritoneal metastases is a lipid-enriched microenvironment and is frequently involved in the poor prognosis of epithelial ovarian cancer (EOC). However, the detailed mechanisms underlying ovarian cancer (OvCa) cells dictating their lipid metabolic activities in promoting tumor progression remain elusive. Here, we report that two critical fatty acid desaturases, stearoyl-CoA desaturase-1 (SCD1) and acyl-CoA 6-desaturase (FADS2), are aberrantly upregulated, accelerating lipid metabolic activities and tumor aggressiveness of ascites-derived OvCa cells. Lipidomic analysis revealed that the elevation of unsaturated fatty acids (UFAs) is positively associated with SCD1/FADS2 levels and the oncogenic capacities of OvCa cells. In contrast, pharmaceutical inhibition and genetic ablation of SCD1/FADS2 retarded tumor growth, suppressed cancer stem cell (CSC) formation and reduced platinum resistance in OvCa cells. Mechanistically, inhibition of SCD1/FADS2 directly downregulated GPX4 and the GSH/GSSG ratio, causing disruption of the cellular redox balance and subsequent iron-mediated lipid peroxidation in ascites-derived OvCa cells. Hence, combinational treatment with SCD1/FADS2 inhibitors and cisplatin synergistically repressed tumor cell dissemination, providing a promising chemotherapeutic strategy against EOC platinum resistance and peritoneal metastases.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi201-vi202
Author(s):  
Sajina Shakya ◽  
Anthony D Gromovsky ◽  
James S Hale ◽  
Arnon M Knudsen ◽  
Briana Prager ◽  
...  

Abstract Glioblastoma (GBM) is marked by cellular heterogeneity through microenvironments of a tumor, including metabolic heterogeneity. While altered cellular metabolism in cancer is well-known, how lipid metabolism is altered in different GBM microenvironmental conditions and cancer stem cell (CSC) states within a tumor remains an open question. We developed 3-dimensional GBM organoid models that mimic the transition zone between nutrient-rich cellular tumor and nutrient-poor psuedopalisading/perinecrotic tumor regions and performed spatially defined RNA-sequencing to investigate lipid metabolism. Spatial analysis revealed striking differences in metabolism between diverse cell populations from the same patient, with lipid enrichment in the hypoxic organoid cores and the pseudopalisading regions of patient tumors. This was accompanied by regionally restricted upregulation of lipid droplets and Hypoxia Inducible Lipid Droplet Associated gene expression in organoid cores and in the pseudopalisading regions of clinical GBM tumors. Using targeted lipidomic analysis, we assessed differences in acutely enriched CSC and non-CSCs from patient-derived models to explore the link between stem cell state and lipid metabolism. CSCs have low lipid droplet accumulation compared to non-CSCs in organoids and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. This suggests lipid metabolism may not be simply a product of the microenvironment but also may be a reflection of cellular state. CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs, but had significantly increased polyunsaturated fatty acid production due to increased expression of fatty acid desaturases FADS1 and FADS2. FADS1 and FADS2 expression are both essential to maintain CSC viability and self-renewal. Our data demonstrate that spatially and hierarchically distinct lipid metabolism phenotypes occur clinically in the majority of patients, can be recapitulated in laboratory models, and these altered lipid metabolic pathways may represent therapeutic targets for GBM.


2021 ◽  
Vol 22 (19) ◽  
pp. 10857
Author(s):  
Nadia Raboanatahiry ◽  
Yongtai Yin ◽  
Kang Chen ◽  
Jianjie He ◽  
Longjiang Yu ◽  
...  

Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.


Author(s):  
Yulia Denisenko ◽  
Tatiana Novgorodtseva ◽  
Marina Antonuyk ◽  
Tatiana Gvozdenko

2021 ◽  
Author(s):  
Yulan Shi ◽  
Sizhong Yang ◽  
Xiule Yue ◽  
Zhixing Zhao ◽  
Lizhe An

Abstract To explore the contribution of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana (C. bungeana), two plastidial ω-3 FAD genes (CbFAD7 and CbFAD8) were cloned and verified in a Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 FAD gene (CbFAD3) on expression profile. Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in non-green tissues. Low temperatures (4, 0 and -4 ℃) resulted in significant increases in trienoic fatty acids (TAs, mainly C18:3), which were consistent with the non-redundant expression of CbFAD3 and CbFAD8 in suspension-cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the contribution of CbFAD8 increased as temperature decrease in the two tissues. Our data revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of these genes in both tissues, and the pyhtohormone regulation in leaves was more complicated with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contribution of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.


Author(s):  
Felise G. Adams ◽  
Alaska Pokhrel ◽  
Erin B. Brazel ◽  
Lucie Semenec ◽  
Liping Li ◽  
...  

Author(s):  
Jiamei Li ◽  
Aravind L. Galla ◽  
Carlos Augusto Avila ◽  
Kaitlin Flattmann ◽  
Kaleb L. Vaughn ◽  
...  

Fatty acid desaturases (FADs) in plants influence levels of susceptibility to multiple stresses, including insect infestations. In this study, infestations of the greAtFABen peach aphid (Myzus persicae) on Arabidopsis thaliana were reduced by mutations in three desaturases: FAB2/SSI2, which encodes a chloroplastic stearoyl-[acyl-carrier-protein] 9-desaturase, and AtFAD7 or AtFAD3, which encode ω-3 FADs in the chloroplast and endoplasmic reticulum (ER) respectively. These data indicate that certain FADs promote susceptibility to aphids, and that aphids are impacted by desaturases in both the chloroplast and ER. Aphid resistance in ssi2, fad3, and/or fad7 might involve altered signaling between these subcellular compartments. C18:1 levels are depleted in ssi2, whereas C18:2 accumulation is enhanced in fad3 and fad7. In contrast, fad8 has higher than normal C18:2 levels but also high C18:1 and low C18:0, and does not impact aphid numbers. Potentially, aphids may be influenced by the balance of multiple fatty acids (FAs) rather than by a single species, with C18:2 promoting aphid resistance and C18:1 promoting susceptibility. Although the fad7 mutant also accumulates higher-than-normal levels of C16:2, this FA does not contribute to aphid resistance because a triple mutant line that lacks detectable levels of C16:2 (fad2fad6fad7) retains comparable levels of aphid resistance as fad7. In addition, aphid numbers are unaffected by the fad5 mutation that inhibits C16:1 synthesis. Together, these results demonstrate that certain FADs are important susceptibility factors in plant-aphid interactions, and that aphid resistance is more strongly associated with differences in C18 abundance than C16 abundance.


Author(s):  
Gao Chen ◽  
Yuelei Cao ◽  
Huairong Zhong ◽  
Xiaodong Wang ◽  
Yanle Li ◽  
...  

Serine/threonine kinases (STKs) play important roles in prokaryotic cellular functions such as growth, differentiation, and secondary metabolism. When the external environment changes, prokaryotes rely on signal transduction systems, including STKs that quickly sense these changes and alter gene expression to induce the appropriate metabolic changes. In this study, we examined the roles of the STK genes spkD and spkG in fatty acid biosynthesis in the unicellular cyanobacterium Synechocystis sp. PCC6803, using targeted gene knockout. The linoleic acid (C18: 2), γ-linolenic acid (C18: 3n6), α-linolenic acid (C18: 3n3), and stearidonic acid (C18: 4) levels were significantly lower in spkD and spkG gene knockout mutants than in the wild type at a culture temperature of 30°C and a light intensity of 40 μmol⋅m–2⋅s–1. The expression levels of fatty acid desaturases and STK genes differed between the spkD and spkG gene knockout mutants. These observations suggest that spkD and spkG may directly or indirectly affect the fatty acid composition in Synechocystis sp. PCC6803 by regulating the expression of fatty acid desaturases genes. Therefore, the STK genes spkD and spkG play important roles in polyunsaturated fatty acid biosynthesis in Synechocystis sp. PCC6803. These findings could facilitate the development of cyanobacteria germplasm resources that yield high levels of fatty acids. In addition, they provide a theoretical basis for the genetic engineering of cyanobacteria with improved yields of secondary metabolites and increased economic benefits.


Biochimie ◽  
2020 ◽  
Vol 179 ◽  
pp. 46-53
Author(s):  
Alexander Y. Starikov ◽  
Roman A. Sidorov ◽  
Kirill S. Mironov ◽  
Sergei V. Goriainov ◽  
Dmitry A. Los

Sign in / Sign up

Export Citation Format

Share Document