scholarly journals Fatty Acid Desaturases in the chloroplast and endoplasmic reticulum promote susceptibility to the Green Peach Aphid, Myzus persicae, in Arabidopsis thaliana

Author(s):  
Jiamei Li ◽  
Aravind L. Galla ◽  
Carlos Augusto Avila ◽  
Kaitlin Flattmann ◽  
Kaleb L. Vaughn ◽  
...  

Fatty acid desaturases (FADs) in plants influence levels of susceptibility to multiple stresses, including insect infestations. In this study, infestations of the greAtFABen peach aphid (Myzus persicae) on Arabidopsis thaliana were reduced by mutations in three desaturases: FAB2/SSI2, which encodes a chloroplastic stearoyl-[acyl-carrier-protein] 9-desaturase, and AtFAD7 or AtFAD3, which encode ω-3 FADs in the chloroplast and endoplasmic reticulum (ER) respectively. These data indicate that certain FADs promote susceptibility to aphids, and that aphids are impacted by desaturases in both the chloroplast and ER. Aphid resistance in ssi2, fad3, and/or fad7 might involve altered signaling between these subcellular compartments. C18:1 levels are depleted in ssi2, whereas C18:2 accumulation is enhanced in fad3 and fad7. In contrast, fad8 has higher than normal C18:2 levels but also high C18:1 and low C18:0, and does not impact aphid numbers. Potentially, aphids may be influenced by the balance of multiple fatty acids (FAs) rather than by a single species, with C18:2 promoting aphid resistance and C18:1 promoting susceptibility. Although the fad7 mutant also accumulates higher-than-normal levels of C16:2, this FA does not contribute to aphid resistance because a triple mutant line that lacks detectable levels of C16:2 (fad2fad6fad7) retains comparable levels of aphid resistance as fad7. In addition, aphid numbers are unaffected by the fad5 mutation that inhibits C16:1 synthesis. Together, these results demonstrate that certain FADs are important susceptibility factors in plant-aphid interactions, and that aphid resistance is more strongly associated with differences in C18 abundance than C16 abundance.

2011 ◽  
Vol 36 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Beibei Lü ◽  
Weiwei Sun ◽  
Shuping Zhang ◽  
Chunling Zhang ◽  
Jun Qian ◽  
...  

HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 1017-1018 ◽  
Author(s):  
Paul W. Bosland ◽  
John J. Ellington

Accessions of Capsicum annuum L., a susceptible host, and C. pubescens (R. & P.), a resistant host, were grown in a replicated greenhouse study to test whether antixenosis (nonpreference), antibiosis, or both was the mechanism for resistance to green peach aphid [Myzus persicae (Sulzer)]. A plant choice experiment established that aphids preferred C. annuum to C. pubescens. A no-plant choice test was not undertaken; nevertheless, the aphid's reproductive rates were measured in leaf containment cages and were similar on both hosts. The mechanism of antibiosis was not indicated because fecundity was not reduced in the containment cages; however, other measures of antibiosis were not studied. These observations suggest that antixenosis may be functioning in C. pubescens.


2021 ◽  
Author(s):  
Junhuan Xu ◽  
Carmen S. Padilla ◽  
Jiamei Li ◽  
Janithri Wickramanayake ◽  
Hillary D. Fischer ◽  
...  

2010 ◽  
Vol 64 (5) ◽  
pp. 800-811 ◽  
Author(s):  
Joe Louis ◽  
Katarzyna Lorenc-Kukula ◽  
Vijay Singh ◽  
John Reese ◽  
Georg Jander ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document