scholarly journals Testing for Genetic Purity in Petunia and Cyclamen Seed Using Random Amplified Polymorphic DNA Markers

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 246-247 ◽  
Author(s):  
Zhang Jianhua ◽  
Miller B. McDonald ◽  
Patricia M. Sweeney

This study examined the use of random amplified polymorphic DNA (RAPD) markers as a means to identify cultivars of petunia (Petunia hybrida Vilm) seedlings and cyclamen (Cyclamen persicum Mill.) seeds and to determine the genetic purity within cyclamen seeds. Bulked samples of six petunia and five cyclamen hybrid cultivars, respectively, produced consistent RAPD marker profiles. Evaluation of individual seeds from a single cyclamen hybrid produced polymorphic banding patterns that were attributed to genetic variability present in the female and male inbred parents. These results show that RAPD makers can be used to quickly assess the genetic purity of selected cultivars of these two flower seed crops.

Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 844-851 ◽  
Author(s):  
K. F. Yu ◽  
K. P. Pauls

An F1 population was used to analyze the inheritance of random amplified polymorphic DNA (RAPD) markers in tetraploid alfalfa. Of the 32 RAPD markers that were used for a segregation analysis in this study, 27 gave ratios that are consistent with random chromosome and random chromatid segregation at meiosis. However, among all of the RAPD markers (121) that were screened in this study, only one example of a double reduction, that is typical of chromatid segregation, was observed. These results indicate that random chromosome segregation is likely the predominant but not the exclusive mode of inheritance for tetraploid alfalfa. χ2 analyses of cosegregation for RAPD marker pairs derived from the female parent revealed nine linkages that fell into four linkage groups. The recombination fractions among linked marker pairs ranged from 1 to 37%. These are the first molecular linkage groups reported in tetraploid alfalfa. In addition, various strategies for molecular mapping in the tetraploid alfalfa genome are proposed that should be of interest to plant breeders who are planning to use molecular markers for alfalfa or other tetraploid species.Key words: RAPD markers, tetraploid alfalfa, segregation, linkage groups.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 528c-528
Author(s):  
Alan T. Bakalinsky ◽  
Hong Xu ◽  
Diane J. Wilson ◽  
S. Arulsekar

A total of eight random amplified polymorphic DNA (RAPD) markers were generated in a screen of 77 primers of 10-base length and were detected reproducibly among nine different grape (Vitis) rootstocks. Occasional failed amplifications could not be explained rationally nor easily corrected by systematic replacement of individual reaction components. In an effort to improve their reliability, the RAPD markers were cloned, their termini sequenced, and new sequence-specific primer pairs were synthesized based on addition of 10 to 14 bases to the 3' termini of the original 10-mers. Six pairs of the new primers were evaluated at their optimal and higher-than optimal annealing temperatures. One primer pair amplified a product the same size as the original RAPD marker in all rootstocks, resulting in loss of polymorphism. Post-amplification digestion with 7 different restriction endonucleases failed to reveal restriction site differences. Three primer pairs amplified an unexpected length variant in some accessions. Two other pairs of primers amplified a number of unexpected bands. Better approaches for exploiting the sequence differences that account for the RAPD phenomenon will be discussed.


1993 ◽  
Vol 11 (2) ◽  
pp. 89-92
Author(s):  
Kimberly H. Krahl ◽  
Michael A. Dirr ◽  
Tracy M. Halward ◽  
Gary D. Kochert ◽  
William M. Randle

Abstract Positive cultivar identification is often difficult or impossible based solely on morphological traits. A technique ensuring reliable, repeatable, and unique cultivar identification is needed. The use of molecular markers offers such a technique, allowing assessment of fine levels of variation directly at the DNA level. In this study, RAPD (Random Amplified Polymorphic DNA) markers were investigated for their utility to identify red maple cultivars. Three out of nineteen primers tested resulted in unique banding patterns for all the maples tested, including 9 red maple clones, 5 silver maple seedlings, and 4 purported interspecific cultivars. The red maple cultivars ‘Red Sunset’ and ‘October Glory’, which are almost indistinguishable morphologically as young trees, were clearly distinguished using RAPD markers. RAPD markers provide a consistently reliable technique for red maple cultivar identification.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 333-334 ◽  
Author(s):  
A.M. Torres ◽  
T. Millán ◽  
J.I. Cubero

Five rose (Rosa spp.) cultivars were analyzed using random amplified polymorphic DNA (RAPD) markers. Using eight primers, all cultivars were distinguished by comparing differences in DNA banding patterns. The RAPD technique fingerprints rose cultivars rapidly and inexpensively for identification and patent protection purposes.


2006 ◽  
Vol 131 (6) ◽  
pp. 731-737 ◽  
Author(s):  
China F. Lunde ◽  
Shawn A. Mehlenbacher ◽  
David C. Smith

Eastern filbert blight (EFB), caused by the fungus Anisogramma anomala (Peck) E. Müller, is an important disease of european hazelnut (Corylus avellana L.) in the Pacific northwestern United States. In 1989, a chance seedling free of EFB was discovered adjacent to a severely diseased orchard near Troutdale, Ore. This selection, subsequently named `Zimmerman', was crossed with three susceptible selections. Based on morphological characters and incompatibility alleles, we speculated that `Zimmerman' (S1 S3) was a hybrid between `Barcelona' (S1 S2) and `Gasaway' (S3 S26). The three seedling populations were inoculated with spores of the pathogen in a greenhouse test and assayed by indirect enzyme-linked immunosorbent assay (ELISA) and by observation of canker incidence. The observed segregation fit a 3 resistant : 1 susceptible ratio in all three progenies, in contrast to the 1 : 1 ratio found when the resistant pollinizer `Gasaway' was crossed to susceptible genotypes. Random amplified polymorphic DNA (RAPD) marker UBC 152800 linked to the resistance gene in `Gasaway' co-segregated with the resistant phenotype in all three populations with 2%, 4%, and 6% recombination, respectively. Seed germination and transplanting records did not provide evidence of selection in favor of resistant seedlings. Pollen germination was 71% in `Gasaway', 29% in `Zimmerman', and 18% in `Barcelona', indicating possible selection at the gametophytic level. Subsequently 16 resistant seedlings of `Zimmerman' were crossed with the highly susceptible selection OSU 313.078. Segregation fit a 3 : 1 ratio in 14 of the 16 progenies, and showed a surplus of resistant seedlings in the other two. None showed a 1 : 1 segregation. Resistance co-segregated with two RAPD markers that flank the `Gasaway' resistance allele. To test allelism of resistance from `Gasaway' and `Zimmerman', VR 6-28 with resistance from `Gasaway' was crossed with `Zimmerman'. Eight resistant selections from this progeny were crossed with OSU 313.078. Five of the eight progenies segregated 3 : 1, two progenies segregated 1 : 1, and OSU 313.078 × OSU 720.056 gave only resistant offspring. The ratios indicate that OSU 720.056 is homozygous resistant and that `Zimmerman' and `Gasaway' share a common resistance allele. Reciprocal translocations have been reported in hazelnut cultivars, including `Barcelona', the leading cultivar in Oregon. `Zimmerman' appears to be a hybrid of `Barcelona' and `Gasaway', but because of cytogenetic abnormalities, `Zimmerman' may have inherited two copies of the chromosome region that contain the resistance locus and flanking RAPD markers. If the region containing the resistance were attached to two independent centromeres, a 3 : 1 segregation ratio for disease response and flanking markers would be expected, and we propose this as the most likely explanation. Resistance from `Gasaway' and `Zimmerman' has been called “immunity” or “complete resistance.” However, we noted a few seedlings with small cankers, nearly all of which lacked sporulating stromata. Flanking RAPD markers indicate that the resistance allele is present in these seedlings. Although not “immune” or “completely resistant,” `Gasaway' and `Zimmerman' transmit a very high level of resistance.


2018 ◽  
Vol 22 (1) ◽  
pp. 22
Author(s):  
Jayusman Jayusman ◽  
Muhammad Na’iem ◽  
Sapto Indrioko ◽  
Eko Bhakti Hardiyanto ◽  
ILG Nurcahyaningsih

Surian Toona sinensis Roem is one of the most widely planted species in Indonesia. This study aimed to estimate the genetic diversity between a number of surian populations in a progeny test using RAPD markers, with the goal of proposing management strategies for a surian breeding program. Ninety-six individual trees from 8 populations of surian were chosen as samples for analysis. Eleven polymorphic primers (OP-B3, OP-B4, OP-B10, OP-H3, OP-Y6, OP-Y7, OP-Y8, OP-Y10, OP-Y11, OP-Y14, and OP-06) producing reproducible bands were analyzed for the 96 trees, with six trees per family sampled. Data were analyzed using GenAlEx 6.3, NTSYS 2.02. The observed percentage of polymorphic loci ranged from 18.2% to 50%. The mean level of genetic diversity among the surian populations was considered to be moderate (He 0.304). Cluster analysis grouped the genotypes into two main clusters, at similarity levels of 0.68 and 0.46. The first two axes of the PCoA explained 46.16% and 25.54% of the total variation, respectively. The grouping of samples into clusters and subclusters did not correspond with family and their distances, but the grouping was in line with the genetic distances of the samples.


2001 ◽  
Vol 91 (3) ◽  
pp. 307-315 ◽  
Author(s):  
L. F. Yourman ◽  
S. N. Jeffers ◽  
R. A. Dean

Stability of phenotypes of isolates of Botrytis cinerea that were sensitive or resistant to benzimidazole and dicarboximide fungicides was examined in the absence of fungicides in laboratory and growth room experiments. Twelve greenhouse isolates of B. cinerea were subcultured on potato dextrose agar (PDA) for 20 generations and on geranium seedlings for 15 generations. Three isolates of each of the following four phenotypes were used: sensitive to the fungicides thiophanate-methy1 (a benzimidazole) and vinclozolin (a dicarboximide) (STSV), resistant to both fungicides (RTRV), resistant to thiophanate-methy1 and sensitive to vinclozolin (RTSV), and sensitive to thiophanate-methy1 and resistant to vinclozolin (STRV). In three trials on PDA, 36 populations were subcultured; 8 populations changed phenotypes by the end of 20 generations, as determined by conidium germination on fungicide-amended medium. Five of the eight initially were STRV; the resulting phenotypes were STSV, RTSV, and RTRV. Populations from eight other isolates exhibited temporary changes in phenotype during intermediate generations on PDA but reverted to initial phenotypes by the twentieth generation; five of these populations changed to phenotype RTRV. In two geranium seedling trials, each of the 12 greenhouse isolates was inoculated onto a set of three seedlings for each generation, and diseased tissue that developed was used to initiate the next generation. Therefore, a total of 72 populations of B. cinerea were subcultured in the two trials; 5 of these populations changed phenotype at the end of 15 generations. Three of the five initially were STRV; these changed to phenotypes STSV or RTRV. In each of the two trials on geranium seedlings, a population subcultured from one STSV isolate changed phenotype one to phenotype RTRV and one to phenotype RTSV. In all trials, no population resistant to thiophanate-methy1 changed to a thiophanate-methy1-sensitive phenotype, and no population changed to phenotype STRV. Random amplified polymorphic DNA (RAPD) fingerprints were generated with the 12 initial isolates and 49 isolates subcultured on PDA or geranium seedlings. Cluster analyses of RAPD markers showed that subcultured isolates exhibiting the same phenotype clustered together and that subcultured isolates derived from a common greenhouse isolate but with different phenotypes were in different clusters. Some populations that did not change phenotype exhibited considerable differences in RAPD marker patterns. The results of this study indicate that, in the absence of fungicides, sensitive populations of B. cinerea can develop resistance to thiophanate-methy1 and vinclozolin, and this resistance can be maintained in populations through multiple generations. Populations resistant only to vinclozolin (STRV) exhibited a high frequency of phenotype change, and populations resistant to both fungicides (RTRV) were stable.


Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 809-816 ◽  
Author(s):  
W. J. Kaiser ◽  
B.-C. Wang ◽  
J. D. Rogers

Isolates of Ascochyta fabae from faba bean (Vicia faba) and A. lentis from lentil (Lens culinaris) collected from different countries were used in this study. The Didymella teleomorph (sexual state) of each fungus was induced to develop and mature on inoculated sterile lentil stems. Both fungi were heterothallic, with two mating types, designated MAT1-1 and MAT1-2. When certain isolates of A. fabae and A. lentis were crossed, hybrid pseudothecia developed. Growth, sporulation, colony appearance, morphology, and pathogenicity of the hybrid progeny frequently differed greatly from the parent isolates. Inoculations with single-ascospore progeny from matings among compatible isolates of A. fabae caused disease in faba bean but not in lentil; inoculations with single-ascospore progeny from matings among compatible isolates of A. lentis incited disease in lentil but not in faba bean. Inoculations with single-ascospore progeny from crosses between faba bean and lentil isolates did not induce disease in either host. Asci from crosses between A. fabae and A. lentis mostly contained fewer than eight ascospores that were, on average, larger than those from eight-spored asci. Matings among certain isolates of A. fabae resulted in production of pseudothecia with ascospores considerably larger than is typical for D. fabae. Random amplified polymorphic DNA (RAPD) banding patterns of Ascochyta isolates from faba bean and lentil are clearly different, and banding patterns from hybrid progeny from crosses between A. fabae and A. lentis confirmed hybridity. RAPD markers proved useful in supporting identifications of ascospore isolates from faba bean to known Ascochyta species. Dendrogram analysis indicated similarity between the two fungal species was low. The pathogenicity tests, morphological characteristics, and RAPD markers indicate that A. fabae and A. lentis represent distinct taxa. D. lentis, with its anamorph, A. lentis, is proposed as a new species that is distinct from D. fabae, with its anamorph, A. fabae.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 478b-478
Author(s):  
Jianping Ren ◽  
Warren F. Lamboy ◽  
lames R. McFerson ◽  
Stephen Kresovich ◽  
Jianping Ren

Fifty-two germplasm accessions of Chinese vegetable Brassicas were analyzed using 112 random amplified polymorphic DNA (RAPD) markers. The array of material examined spanned a wide range of morphological, geographic, and genetic diversity, and included 30 accessions of Brassica rapa (Chinese cabbage, pakchoi, turnip, broccoletto), 18 accessions of B. juncea (leaf, stem, and root mustards), and 4 accessions of B. oleracea ssp.alboglabra (Chinese kale). The RAPD markers unambiguously identified all 52 accessions. Net and Li genetic similarities were computed and used in UPGMA cluster analyses. Accessions and subspecies clustered into groups corresponding to the three species, but some accessions of some subspecies were most closely related to accessions belonging to another subspecies. Using genetic similarities, it was found that Chinese cabbage is more. likely to have been produced by hybridization of turnip and pakchoi, than as a selection from either turnip or pakchoi alone. RAPD markers provide a fast, efficient technique for diversity assessment that complements methods currently in use in genetic resources collections.


Sign in / Sign up

Export Citation Format

Share Document