scholarly journals Transcriptome-Wide Analysis Reveals Key DEGs in Flower Color Regulation of Hosta plantaginea (Lam.) Aschers

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Jingying Zhang ◽  
Changhai Sui ◽  
Yanli Wang ◽  
Shuying Liu ◽  
Huimin Liu ◽  
...  

Background: Hosta plantaginea (Lam.) Aschers (HPA), a species in the family Liliaceae, is an important landscaping plant and herbaceous ornamental flower. However, because the flower has only two colors, white and purple, color matching applications are extremely limited. To date, the mechanism underlying flower color regulation remains unclear. Methods: In this study, the transcriptomes of three cultivars—H. plantaginea (HP, white flower), H. Cathayana (HC, purple flower), and H. plantaginea ‘Summer Fragrance’ (HS, purple flower)—at three flowering stages (bud stage, initial stage, and late flowering stage) were sequenced with the Illumina HiSeq 2000 (San Diego, CA, USA). The RNA-Seq results were validated by qRT-PCR of eight differentially expressed genes (DEGs). Then, we further analyzed the relationship between anthocyanidin synthase (ANS), chalcone synthase (CHS), and P450 and the flower color regulation by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Eukaryotic Orthologous Groups (KOG) network and pathway enrichment analyses. The overexpression of CHS and ANS in transgenic tobacco petals was verified using qRT-PCR, and the petal colors associated with the overexpression lines were confirmed using absorbance values. Results: Over 434,349 transcripts were isolated, and 302,832 unigenes were identified. Additionally, through transcriptome comparisons, 2098, 722, and 606 DEGs between the different stages were found for HP, HC, and HS, respectively. Furthermore, GO and KEGG pathway analyses showed that 84 color-related DEGs were enriched in 22 pathways. In particular, the flavonoid biosynthetic pathway, regulated by CHS, ANS, and the cytochrome P450-type monooxygenase gene, was upregulated in both purple flower varieties in the late flowering stage. In contrast, this gene was hardly expressed in the white flower variety, which was verified in the CHS and ANS overexpression transgenic tobacco petals. Conclusions: The results suggest that CHS, ANS, and the cytochrome P450s-regulated flavonoid biosynthetic pathway might play key roles in the regulation of flower color in HPA. These insights into the mechanism of flower color regulation could be used to guide artificial breeding of polychrome varieties of ornamental flowers.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 452A-452
Author(s):  
S.O. Park ◽  
A. Dursun ◽  
D.P. Coyne

Common bacterial blight (CBB), incited by Xanthomonas campestris pv. phaseoli (Xcp), is an important disease of common bean (Phaseolus vulgaris L.). Tepary bean (P. acutifolius A. Gray) is of interest to bean breeders because of resistance to CBB. The objective was to identify RAPD markers linked to major dominant genes for CBB resistance and purple flower color using bulked segregant analysis in an F2 population from a tepary bean cross Nebr#19 [resistant (R) to CBB and white flower color] × Nebr#4B [susceptible (S) to CBB and purple flower color]. Ten RAPD primers (600 RAPD primers screened) showed polymorphisms between bulked DNA derived from R and S plants. All markers showed coupling linkage with CBB resistance. The RAPD marker of G-14 primer was 5.2 cM distant from the gene for resistance to Xcp strain LB-2. The RAPD marker of L-18 primer was 6.8 cM distant from the gene for resistance to Xcp strain SC-4A. The RAPD marker of G-14 primer was 26.2 cM distant from the gene for resistance to Xcp strain EK-11. Seven RAPD primers showed polymorphisms between bulked DNA derived from purple and white flower plants. All markers showed coupling linkage with the gene for purple flower color. The RAPD marker of Y-6 primer was 3.6 cM distant from the gene for purple flower color.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mercedes Sánchez-Cabrera ◽  
Francisco Javier Jiménez-López ◽  
Eduardo Narbona ◽  
Montserrat Arista ◽  
Pedro L. Ortiz ◽  
...  

Anthocyanins are the primary pigments contributing to the variety of flower colors among angiosperms and are considered essential for survival and reproduction. Anthocyanins are members of the flavonoids, a broader class of secondary metabolites, of which there are numerous structural genes and regulators thereof. In western European populations of Lysimachia arvensis, there are blue- and orange-petaled individuals. The proportion of blue-flowered plants increases with temperature and daylength yet decreases with precipitation. Here, we performed a transcriptome analysis to characterize the coding sequences of a large group of flavonoid biosynthetic genes, examine their expression and compare our results to flavonoid biochemical analysis for blue and orange petals. Among a set of 140 structural and regulatory genes broadly representing the flavonoid biosynthetic pathway, we found 39 genes with significant differential expression including some that have previously been reported to be involved in similar flower color transitions. In particular, F3′5′H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. The expression results were complemented by careful examination of the SNPs that differentiate the two color types for these two critical genes. The decreased expression of F3′5′H in orange petals and differential expression of two distinct copies of DFR, which also exhibit amino acid changes in the color-determining substrate specificity region, strongly correlate with the blue to orange transition. Our biochemical analysis was consistent with the transcriptome data indicating that the shift from blue to orange petals is caused by a change from primarily malvidin to largely pelargonidin forms of anthocyanins. Overall, we have identified several flavonoid biosynthetic pathway loci likely involved in the shift in flower color in L. arvensis and even more loci that may represent the complex network of genetic and physiological consequences of this flower color polymorphism.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11239
Author(s):  
Lanya Shui ◽  
Kaisen Huo ◽  
Yan Chen ◽  
Zilin Zhang ◽  
Yanfang Li ◽  
...  

Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.


2010 ◽  
Vol 74 (9) ◽  
pp. 1760-1769 ◽  
Author(s):  
Yoshikazu TANAKA ◽  
Filippa BRUGLIERA ◽  
Gianna KALC ◽  
Mick SENIOR ◽  
Barry DYSON ◽  
...  

2006 ◽  
Vol 23 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Yukiko Ueyama ◽  
Yukihisa Katsumoto ◽  
Yuko Fukui ◽  
Masako Fukuchi-Mizutani ◽  
Hideo Ohkawa ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 649
Author(s):  
Qunlu Liu ◽  
Fiza Liaquat ◽  
Yefeng He ◽  
Muhammad Farooq Hussain Munis ◽  
Chunying Zhang

Rhododendronsimsii is one of the top ten famous flowers in China. Due to its historical value and high aesthetic, it is widely popular among Chinese people. Various colors are important breeding objectives in Rhododendron L. The understanding of the molecular mechanism of flower color formation can provide a theoretical basis for the improvement of flower color in Rhododendron L. To generate the R. simsii transcriptome, PacBio sequencing technology has been used. A total of 833,137 full-length non-chimeric reads were obtained and 726,846 high-quality full-length transcripts were found. Moreover, 40,556 total open reading frames were obtained; of which 36,018 were complete. In gene annotation analyses, 39,411, 18,565, 16,102 and 17,450 transcriptions were allocated to GO, Nr, KEGG and COG databases, correspondingly. To identify long non-coding RNAs (lncRNAs), we utilized four computational methods associated with Protein families (Pfam), Cooperative Data Classification (CPC), Coding Assessing Potential Tool (CPAT) and Coding Non Coding Index (CNCI) databases and observed 6170, 2265, 4084 and 1240 lncRNAs, respectively. Based on the results, most genes were enriched in the flavonoid biosynthetic pathway. The eight key genes on the anthocyanin biosynthetic pathway were further selected and analyzed by qRT-PCR. The F3′H and ANS showed an upward trend in the developmental stages of R. simsii. The highest expression of F3′5′H and FLS in the petal color formation of R. simsii was observed. This research provided a huge number of full-length transcripts, which will help to proceed genetic analyses of R. simsii. native, which is a semi-deciduous shrub.


Planta ◽  
2021 ◽  
Vol 253 (1) ◽  
Author(s):  
Ledong Jia ◽  
Junsheng Wang ◽  
Rui Wang ◽  
Mouzheng Duan ◽  
Cailin Qiao ◽  
...  

Abstract Main conclusion The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Abstract Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1181-1184
Author(s):  
Yan Zhao Zhang ◽  
Yan Wei Cheng ◽  
Hui Yuan Ya ◽  
Chao Yun ◽  
Jian Ming Han ◽  
...  

Anthocyanin mainly responsible for flowers color in many plant species, it also accumulated in response to lots of environmental stress to reduce the damage to plant cell. Anthocyanin synthesis (ANS) protein is an important synthetase participated in anthocyanin biosynthetic pathway. In this study, we isolated the PsANS gene from transcriptome database built by our previous study. The PsANS gene contain an 1050bp open reading frame encoding 349 amino acid, phylogenetic analysis revealed that PsANS was segrated into a group with ANS from others plant species. Secondary and thri-dimension structure prediction also revealed that it may have similar function with ANS in others plant species. The identified PsANS gene would be helpful for further research in flower color modification and resistance breeding.


Sign in / Sign up

Export Citation Format

Share Document