scholarly journals Environmental Effects and Postharvest Flux of Antiplatelet Activity, Pungency, and Solids in Onion (Allium cepa)

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 543D-543
Author(s):  
Jan E.P. Debaene ◽  
I.L. Goldman

Onion is a species within the Allium genus with great culinary importance. Onion extract contains organosulfur compounds that influence pungency and inhibit blood platelet aggregation. Antiplatelet activity has the potential of reducing cardiovascular disease. Onions are typically held in postharvest storage for up to 160 days, during which time volatile organosulfur compounds may be affected. A study was conducted to evaluate antiplatelet activity, pungency, and percent solids during cold storage of onions grown in replicated plots in Wisconsin and Oregon in 1994 and 1995. Organosulfur compound concentration and antiplatelet activity were also measured in progeny derived from crosses of inbred lines contrasting for pungency grown during 1995 and 1996 in Wisconsin. For the first study, bulbs were evaluated for antiplatelet activity, percent solids and pungency at 40day intervals after harvest. Significant differences were detected for these traits among years, states, dates of sampling, and lines. During the 120-day postharvest period in 1994, antiplatelet activity increased by 25% and 80% for Oregon and Wisconsin, respectively, averaged over all lines. During the same period in 1995, antiplatelet activity decreased by 35% and 4% in the two locations. For three out of four lines, antiplatelet activity was 4.6% higher for Wisconsin than Oregon. Averaged over states, antiplatelet activity was 9.7% higher in 1994 compared to 1995. Pungency was positively correlated with antiplatelet activity in Wisconsin. Broad-sense heritabilities were calculated for antiplatelet activity and organosulfur compound concentration. These data demonstrate that environmental factors influence postharvest flux of antiplatelet activity and pungency in onion.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 523G-524 ◽  
Author(s):  
Kathryn S. Orvis ◽  
Irwin L. Goldman

Organosulfur compounds in onion extracts inhibit the aggregation of human blood platelets. Antiplatelet activity is important to human cardiovascular health. We hypothesized that modification of sulfur fertility may increase organosulfur compound concentration and thereby affect platelet inhibitory activity in onion. Four contrasting onion genotypes were grown at four sulfur levels in a hydroponic system in the greenhouse and in contrasting sulfur environments in seven field locations in Wisconsin, Oregon, and New York. The contrasting field sites were comprised of sandy soils with a mean sulfate level of 5.4 ppm and muck soils with a mean sulfate level of 20.3 ppm. Onions grown in field environments with increased soil sulfur concentrations had significantly higher antiplatelet activity (33% higher than sand-grown onions; P < 0.001). The greenhouse experiment was conducted in hydroponics with nutrient solutions containing four sulfur levels ranging from 0.8 mM to 15 mM sulfate. The 10-mM sulfur treatment resulted in onion bulbs with 10% higher antiplatelet activity over those grown in the 0.8-mM sulfur treatment (P < 0.06). These data suggest that sulfur concentration in nutrient solution and in soil may be directly responsible for the increased antiplatelet activity in onion extracts observed in this study.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 398A-398
Author(s):  
Kathryn S. Orvis ◽  
Irwin L. Goldman

Heart attack and stroke, a leading cause of death in the United States, have been associated with blood platelet aggregation. Onion extract inhibits blood platelet aggregation both in vitro and in vivo. Current trends toward natural foods and health remedies may point to the importance of onion-induced antiplatelet activity (OIAA). The genetic control of OIAA has yet to be revealed. One-hundred-eighty-three F3 families were derived from a long-day mild inbred line crossed to a long-day pungent inbred line that differ by for OIAA by 67%. Families were grown in a RCB design with two replications in muck soil (Randolph, Wis.) in 1997. Extracts were made from crushing bulb tissue in a mechanical juicer. F3 families were evaluated for OIAA and soluble solids (SS). OIAA was measured by electrical impedance aggregometry using two human blood donors. Endpoint (ohms) and slope of the aggregation curve were recorded. SS were measured by refractometry. F3 families were significantly different for OIAA and SS (P < 0.0001) in the ANOVA. A strong positive correlation of 0.96 was revealed for slope of curve and endpoint across families, replications, and blood donors. This correlation has not been previously reported for onion and suggests that for these families, descriptions of OIAA based on either rate of aggregation or endpoint are functionally equivalent. Both SS and OIAA exhibit transgressive segregation in this group of F3 families. Twenty percent exhibit OIAA stronger than the pungent parent and 5% were less than the mild parent. The family with the highest OIAA was 4-fold higher than the pungent parent of the cross, which could be useful in future onion breeding efforts. In addition, transgressive segregation in these families aids in QTL investigations for OIAA, SS and other economically important traits.


1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


1989 ◽  
Vol 62 (03) ◽  
pp. 955-961 ◽  
Author(s):  
Ian S Watts ◽  
Rebecca J Keery ◽  
Philip Lumley

SummaryWe have investigated the effect of two procedures that modify human platelet surface membrane glycoprotein (Gp) IIb and IIIa complexes upon whole blood platelet aggregation to a range of agonists. (A) Irreversible disruption of complexes by temporary (30 min) Ca2+-deprivation with EGTA at 37° C. (B) Binding of a monoclonal antibody M148 to the complex. EGTA exposure abolished aggregation to ADP, adrenaline and PAF. In contrast, full aggregation curves to collagen and U-46619 could still be established. EGTA exposure reduced M148 binding to platelets by 80%. Excess M148 abolished aggregation to ADP, PAF, collagen and U-46619. However, upon removal of unbound antibody from platelets full aggregation curves to collagen and U-46619 but not to ADP and PAF could be re-established. Thus human platelet aggregation to ADP, PAF and adrenaline appears absolutely dependent upon surface membrane GpIIb/IIIa complexes. In contrast, collagen and U-46619 cause expression of an additional distinct pool of Gp complexes inaccessible to EGTA and M148 in unstimulated platelets which is intimately involved in aggregation to these agonists.


1964 ◽  
Vol 12 (01) ◽  
pp. 179-200 ◽  
Author(s):  
Torstein Hovig

SummaryThe effect of calcium and magnesium on the aggregation of rabbit blood platelets in vitro was studied, with the following results:1. Platelet aggregation induced by ADP or collagen could be prevented by EGTA or EDTA. The aggregating effect was restored by recalcification. The effect was also restored by addition of magnesium in EDTA-PRP, but not in EGTA-PRP unless a surplus of calcium was present.2. Calcium remained in concentrations of the order of 0.15–0.25 mM after dialysis or cation exchange of plasma. Aggregation of washed platelets resuspended in such plasma could not be produced with ADP or collagen, unless the calcium concentration was increased or that magnesium was added.3. The adhesiveness of blood platelets to collagen was reduced in EGTA-PRP and EDTA-PRP. Release of ADP from platelets influenced by collagen could not be demonstrated either in EGTA-PRP (presence of magnesium) or in EDTA-PRP.4. It is concluded that calcium is a necessary factor both for the reaction leading to release of ADP and for the the aggregation produced by ADP.5. Thrombin induced aggregation of washed platelets suspended in tris-buffered saline in the presence of calcium. No effect of magnesium could be observed unless small quantities of calcium were present.


Heterocycles ◽  
2006 ◽  
Vol 68 (8) ◽  
pp. 1565 ◽  
Author(s):  
Masanori Somei ◽  
Takako Iwaki ◽  
Fumio Yamada ◽  
Yoshio Tanaka ◽  
Koki Shigenobu ◽  
...  

2006 ◽  
Vol 96 (12) ◽  
pp. 781-788 ◽  
Author(s):  
Andreas Calatzis ◽  
Sandra Penz ◽  
Hajna Losonczy ◽  
Wolfgang Siess ◽  
Orsolya Tóth

SummarySeveral methods are used to analyse platelet function in whole blood. A new device to measure whole blood platelet aggregation has been developed, called multiple electrode platelet aggregometry (MEA). Our aim was to evaluate MEA in comparison with the single platelet counting (SPC) method for the measurement of platelet aggregation and platelet inhibition by aspirin or apyrase in diluted whole blood. Platelet aggregation induced by different concentrations of ADP, collagen and TRAP-6 and platelet inhibition by apyrase or aspirin were determined in citrateor hirudin-anticoagulated blood by MEA and SPC. MEA indicated that spontaneous platelet aggregation was lower, and stimulated platelet aggregation was higher in hirudin- than citrate-anticoagulated blood. In hirudin-anticoagulated, but not citrate-anticoagulated blood, spontaneous platelet aggregation measured by MEA was inhibited by apyrase. For MEA compared with SPC the dose response-curves of agonist-induced platelet aggregation in citrate- and hirudin-blood showed similar EC50 values for TRAP, and higher EC50 values for ADP (non-significant) and collagen (p<0.05). MEA and the SPC method gave similar results concerning platelet-inhibition by apyrase and aspirin. MEA was more sensitive than SPC to the inhibitory effect of aspirin in collagen-induced aggregation. In conclusion, MEA is an easy, reproducible and sensitive method for measuring spontaneous and stimulated platelet aggregation, and evaluating antiplatelet drugs in diluted whole blood. The use of hirudin as an anticoagulant is preferable to the use of citrate. MEA is a promising technique for experimental and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document