scholarly journals 059 Molecular Markers Linked to the Ur-6 Gene Controlling Specific Rust Resistance in Common Bean

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 398D-398 ◽  
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
James R. Steadman

Bean rust, caused by Uromyces appendiculatus, is an important disease of common bean (Phaseolus vulgaris L.). The objective was to identify RAPD markers linked to the gene (Ur-6) for specific resistance to rust race 51 using bulked segregant analysis in an F2 segregating population from the common bean cross pinto `Olathe' (resistant to rust) × great northern Nebraska #1 selection 27 (susceptible to rust). A single dominant gene controlling specific resistance to race 51 was hypothesized based on F2 segregation, and then was confirmed in the F3 generation. A good fit to a 3:1 ratio for band presence to band absence for each of three markers was observed in 100 F2 plants. Three RAPD markers were detected in a coupling phase linkage with the Ur-6 gene. Coupling-phase RAPD marker OAB14.600 was the most closely linked to the Ur-6 gene at a distance of 3.5 cM among these markers. No RAPD markers were identified in a repulsion phase linkage with the Ur-6 gene. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid multiple genes into a bean cultivar for more durable rust resistance.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 454A-454
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
James R. Steadman

Bean rust, caused by Uromyces appendiculatus, is a major disease of common bean (Phaseolus vulgaris). The objective was to identify RAPD markers linked to the gene (Ur-7) for specific resistance to rust race 59 using bulked segregant analysis in an F2 segregating population from the common bean cross GN1140 (resistant to rust) × Nebraska #1 (susceptible to rust). A single dominant gene controlling specific resistance to race 59 was found in the F2 and was confirmed in the F3. Seven RAPD markers were detected in a coupling-phase linkage with the Ur-7 gene. Coupling-phase RAPD markers OAA11.500, OAD12.550, and OAF17.900 with no recombination to the Ur-7 gene were found. Three RAPD markers were identified in a repulsion-phase linkage with the Ur-7 gene among the three markers at a distance of 8.2 cM. This is the first report on RAPD markers linked to the Ur-7 gene in common bean. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be used to pyramid multiple genes into a bean cultivar for more-durable rust resistance.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1050-1056 ◽  
Author(s):  
V Chagué ◽  
T Fahima ◽  
A Dahan ◽  
G L Sun ◽  
A B Korol ◽  
...  

Microsatellite and random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to the Yr15 gene which confer resistance to stripe rust (Puccina striiformis Westend) in wheat. By using near isogenic lines (NILs) for the Yr15 gene and a F2 mapping population derived from crosses of these lines and phenotyped for resistance, we identified one microsatellite marker (GWM33) and one RAPD marker (OPA19800) linked to Yr15. Then, bulked segregant analysis was used in addition to the NILs to identify RAPD markers linked to the target gene. Using this approach, two RAPD markers linked to Yr15 were identified, one in coupling (UBC199700) and one in repulsion phase (UBC2121200). After Mapmaker linkage analysis on the F2 population, the two closest markers were shown to be linked to Yr15 within a distance of about 12 cM. The recombination rates were recalculated using the maximum likelihood technique to take into account putative escaped individuals from the stripe rust resistance test and obtain unbiased distance estimates. As a result of this study, the stripe rust resistance gene Yr15 is surrounded by two flanking PCR markers, UBC199700 and GWM33, at about 5 cM from each side.Key words: wheat, Triticum dicoccoides, Yr15 stripe rust resistance gene, genetic mapping, microsatellite markers, RAPD markers.


2000 ◽  
Vol 23 (3) ◽  
pp. 633-637 ◽  
Author(s):  
Ana Lilia Alzate-Marin ◽  
Henrique Menarim ◽  
José Mauro Chagas ◽  
Everaldo Gonçalves de Barros ◽  
Maurilio Alves Moreira

The pathogenic variability of the fungus Colletotrichum lindemuthianum represents an obstacle for the creation of resistant common bean (Phaseolus vulgaris L.) varieties. Gene pyramiding is an alternative strategy for the development of varieties with durable resistance. RAPD markers have been proposed as a means to facilitate pyramiding of resistance genes without the need for multiple inoculations of the pathogens. The main aims of this work were to define the inheritance pattern of resistance present in common bean cultivar AB 136 in segregating populations derived from crosses with cultivar Rudá (susceptible to most C. lindemuthianum races) and to identify RAPD markers linked to anthracnose resistance. The two progenitors, populations F1 and F2, F2:3 families and backcross-derived plants were inoculated with race 89 of C. lindemuthianum under environmentally controlled greenhouse conditions. The results indicate that a single dominant gene, Co-6, controls common bean resistance to this race, giving a segregation ratio between resistant and susceptible plants of 3:1 in the F2, 1:0 in the backcrosses to AB 136 and 1:1 in the backcross to Rudá. The segregation ratio of F2:3 families derived from F2 resistant plants was 1:2 (homozygous to heterozygous resistant). Molecular marker analyses in the F2 population identified a DNA band of approximately 940 base pairs (OPAZ20(940)), linked in coupling phase at 7.1 cM of the Co-6 gene. This marker is being used in our backcross breeding program to develop Rudá-derived common bean cultivars resistant to anthracnose and adapted to central Brazil.


2000 ◽  
Vol 23 (2) ◽  
pp. 399-402 ◽  
Author(s):  
Fábio Gelape Faleiro ◽  
Wender Santos Vinhadelli ◽  
Vilmar Antonio Ragagnin ◽  
Ronan Xavier Corrêa ◽  
Maurilio Alves Moreira ◽  
...  

Rust, caused by the fungus Uromyces appendiculatus, may cause a significant loss to common bean (Phaseolus vulgaris L.) yield. RAPD markers tightly linked to the resistance genes may be used in breeding programs to aid the development of rust-resistant bean cultivars. In this sense, the objective of the present work was to identify RAPD markers linked to a rust resistance gene block present in the cultivar Ouro Negro. Two hundred and fourteen F2 individuals from a cross between the resistant cultivar Ouro Negro and the susceptible cultivar US Pinto 111 were inoculated with a mixture of eight races of U. appendiculatus. The segregation ratio obtained suggested that resistance is monogenic and dominant. Bulked segregant analysis was used in conjunction with the RAPD technique to search for markers linked to rust resistance genes. Two molecular markers flanking the rust resistance gene block were identified, one at 5.8 ± 1.6 cM (OX11(630)) and the other at 7.7 ± 1.7 cM (OF10(1,050)) of the gene. Simulated indirect selection efficiency in the F2 population using the two markers was 100%. The molecular markers identified in this work are currently being used for the selection of disease-resistant plants in the commom bean breeding program of the Federal University of Viçosa.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 547b-547
Author(s):  
Soon O. Park ◽  
Dermot P. Coyne ◽  
Geunhwa Jung ◽  
E. Arnaud-Santana ◽  
H. Ariyarathne

Seed size is an important trait in common bean. The objective was to identify RAPD markers associated with QTL for seed weight, seed length, and seed height in a molecular marker-based linkage map in a recombinant inbred (RI) population from the common bean cross of the larger seeded (100 seed/39 to 47 g) PC-50 (ovate seed shape) × smaller seeded (100 seed/26 to 35 g) XAN-159 (flat rhomboidal seed shape). The parents and RI lines were grown in two separate greenhouse and two field (Wisconsin, Dominican Republic) experiments using a RCBD. Continuous distributions for seed weight, seed length, and seed height were observed for RI lines indicating quantitative inheritance. One to three QTLs affecting seed weight explained 17% to 41% of the phenotypic variation. Two to three QTLs for seed length explained 23% to 45% of the phenotypic variation. One to four QTL associated with seed height explained 17% to 39% of the phenotypic variation. A RAPD marker M5.850 in linkage group 3 was consistently associated with seed weight, seed length, and seed height in all experiments and explained 7% to 13% of the phenotypic variation for these traits. A seedcoat pattern morphological marker (C) in linkage group 1 was associated with seed weight and seed height in two greenhouse experiments.


1993 ◽  
Vol 86 (4) ◽  
pp. 505-512 ◽  
Author(s):  
S. D. Haley ◽  
P. N. Miklas ◽  
J. R. Stavely ◽  
J. Byrum ◽  
J. D. Kelly

Genome ◽  
1998 ◽  
Vol 41 (3) ◽  
pp. 440-444 ◽  
Author(s):  
K R Tiwari ◽  
G A Penner ◽  
T D Warkentin

Powdery mildew is a serious disease of pea caused by the obligate parasite Erysiphe pisi Syd. Random amplified polymorphic DNA (RAPD) analysis has emerged as a cost-effective and efficient marker system. The objective of this study was to identify RAPD markers for powdery mildew resistance gene er-1. The resistant cultivar Highlight (carrying er-1) and the susceptible cultivar Radley were crossed, and F3 plants were screened with Operon (OP) and University of British Columbia (UBC) primers, using bulked segregant analysis. A total of 416 primers were screened, of which amplicons of three Operon primers, OPO-18, OPE-16, and OPL-6, were found to be linked to er-1. OPO-181200 was linked in coupling (trans to er-1) and no recombinants were found. OPE-161600 (4 ± 2 cM) and OPL-61900 (2 ± 2 cM) were linked in repulsion (cis to er-1). The fragments OPO-181200 and OPE-161600 were sequenced and specific primers designed. The specific primer pair Sc-OPO-181200 will be useful in identifying homozygous resistant individuals in F2 and subsequent segregating generations. Sc-OPE-161600 will have greatest utility in selecting heterozygous BC\dn6 nF1 individuals in backcross breeding programs.Key words: bulked segregant analysis,Erysiphe pisi, pea, RAPD.


1999 ◽  
Vol 89 (4) ◽  
pp. 281-285 ◽  
Author(s):  
Ana Lilia Alzate-Marin ◽  
Henrique Menarim ◽  
Geraldo Assis de Carvalho ◽  
Trazilbo José de Paula ◽  
Everaldo Gonçalves de Barros ◽  
...  

Three F2 populations derived from crosses between the resistant cultivar AB 136 and the susceptible cultivar Michelite (MiA), and one F2 population derived from a cross between AB 136 and Mexico 222 (MeA), were used to identify markers linked to anthracnose resistance genes present in cultivar AB 136. Primer OPZ04 produced a DNA band (OPZ04560) linked in coupling phase to the resistance gene for pathotype 89 (8.5 ± 0.025 cM) in one population derived from the cross MiA. In the same population, primer OPZ09 produced one band (OPZ09950) linked in repulsion phase (20.4 ± 0.014 cM) to the same resistance gene. The simultaneous use of markers in coupling and in repulsion phases allowed the identification of the three genotypic classes. In the other two populations from cross MiA, OPZ04560 was linked in coupling phase to resistance genes for pathotypes 73 (2.9 ± 0.012 cM) and 81 (2.8 ± 0.017 cM). In population MeA, OPZ04560 was linked in coupling phase (7.5 ± 0.033 cM) to resistance to pathotype 64. These data suggest that a single gene or complex locus of linked resistance genes present in cultivar AB 136 confers resistance to all four pathotypes of C. lindemuthianum.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 609f-609 ◽  
Author(s):  
J. Lu ◽  
O. Lamikanra ◽  
Y. Wang ◽  
Z. Liu ◽  
D. Ramming

The grape is an important horticultural crop that is grown worldwide. Breeding a new grape cultivar by conventional means normally will take several generations of backcross, at least 15 years. The efficiency and speed of selection can be accelerated if genetic markers are available for early screening. This project is designed to generate RAPD markers linked to viticulturally important traits, including seedlessness and pistillate genes. A F1 population with 64 progenies of V. vinifera was used for the RAPD analysis. Bulked Segregant Analysis (BSA) method was used for RAPD primer screening. Three-hundred primers were screened between the two pairs of pooled DNA samples, seeded and seedlessness, pistillate and perfect flowers. At least 10 primers produced one polymorphism each between the pools. Further analysis revealed that one of these RAPDs cosegregated tightly with the seedlessness trait, while the others either had loose linkage or no linkage to the traits. To make the RAPD marker useful for breeding selection, an attempt was made to convert it into SCAR marker. The results demonstrated that the RAPD marker may be useful for grape breeding and interpreting inheritance of a particular trait in grapes.


Plant Disease ◽  
2002 ◽  
Vol 86 (12) ◽  
pp. 1303-1309 ◽  
Author(s):  
E. S. Johnson ◽  
M. F. Wolff ◽  
E. A. Wernsman ◽  
R. C. Rufty

Bulked segregant (BSA) and random amplified polymorphic DNA (RAPD) analyses were used to identify markers linked to the dominant black shank resistance gene, Ph, from flue-cured tobacco (Nicotiana tabacum) cv. Coker 371-Gold. Sixty RAPD markers, 54 in coupling and 6 in repulsion phase linkage to Ph, were identified in a K 326-derived BC1F1 (K 326-BC1F1) doubled haploid (DH) population. Thirty RAPD markers, 26 in coupling and 4 in repulsion phase linkage to Ph, were used to screen 149 K 326-BC2F1 haploid plants. Complete linkage between the 26 coupling phase markers and Ph was confirmed by screening 149 K 326-BC2F1 DH lines produced from the haploid plants in black shank nurseries. RAPD markers OPZ-5770 in coupling and OPZ-7370 in repulsion phase linkage were used to select plants homozygous for the Ph gene for further backcrossing to the widely grown flue-cured cultivar K 326. Black shank disease nursery evaluation of 11 K 326-BC4S1 lines and their testcross hybrids to a susceptible tester confirmed linkage between Ph and OPZ-5770. The results demonstrated the efficiency of marker-assisted selection for Ph using a RAPD marker linked in coupling and repulsion. Complete linkage between 26 RAPD markers and the Ph gene was confirmed in the K 326-BC5 generation, and RAPD phenotypes were stable across generations and ploidy levels. These RAPD markers are useful in marker-assisted selection for Ph, an important black shank resistance gene in tobacco.


Sign in / Sign up

Export Citation Format

Share Document