scholarly journals Tree Fruit Reflective Film Improves Red Skin Coloration and Advances Maturity in Peach

2001 ◽  
Vol 11 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Desmond R. Layne ◽  
Zhengwang Jiang ◽  
James W. Rushing

Replicated trials were conducted during the summers of 1998 and 1999 at commercial orchards in South Carolina to determine the influence of ground application of a metalized, high density polyethylene reflective film on fruit red skin color and maturity of peach (Prunus persica) cultivars that historically have poor red coloration. At each site there were two experimental treatments: 1) control and 2) reflective film (film). Film was applied 2 to 4 weeks before anticipated first harvest date by laying a 150-cm (5-ft) wide strip of plastic on either side of the tree row in the middles. Treatment areas at a given farm ranged from 0.25 to 0.5 ha (0.5 to 1.0 acre) in size and each treatment was replicated four times at each site. At harvest, two 50-fruit samples were picked from each plot per treatment. All fruit were sized and visually sorted for color (1 = 0% to 25%, 2 = 26% to 50%, 3 = 51% to 75%, and 4 = 76% to 100% red surface, respectively). A 10-fruit subsample was selected following color sorting and evaluated for firmness and soluble solids concentration (SSC). All cultivars tested (`CVN1', `Loring', `Bounty', `Summer Gold', `Sunprince', `Cresthaven' and `Encore') experienced significant increases in percent red surface when film was used in 1998 and 1999. This color improvement ranged from 16% to 44% (mean = 28%). On average, fruit from film were 4.2 N (0.9 lb force) softer and had 0.3% higher SSC than control fruit. Growers harvested more fruit earlier and in fewer harvests for film. Fruit size was not affected by film. Reflected solar radiation from film was not different in quality than incident sunlight. Film resulted in an increase in canopy air temperature and a reduction in canopy relative humidity during daylight hours.

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 496A-496
Author(s):  
Desmond R. Layne ◽  
Zhengwang Jiang ◽  
James W. Rushing

Replicated trials were conducted in summers of 1998 and 1999 at several commercial orchards to determine the influence of a metalized, high-density polyethylene reflective film (SonocoRF, Sonoco Products Co., Hartsville, S.C.) on fruit red skin color and maturity of peach cultivars that historically have poor red coloration in South Carolina. At each site there were two experimental treatments: i) Control; and ii) Reflective Film (RF). RF was laid 2 to 4 weeks before anticipated first pick date by laying a 5-ft-wide strip of plastic on either side of the tree row in the middles. Treatment blocks at a given farm ranged from 0.5 to 1 acre in size and each treatment was replicated four times at each site. At harvest, two 50-fruit samples were picked from each block per treatment. All fruit were sized and visually sorted for color (1 = 0% to 25%, 2 = 26% to 50%, 3 = 51% to 75%, and 4 = 76% to 100% red surface, respectively). A 10-fruit subsample was selected following color sorting and evaluated for puncture pressure and soluble solids concentration (SSC). All cultivars tested (CVN1, Loring, Bounty, Summer Gold, Sun Prince, Cresthaven, and Encore) experienced significant increases in percent red surface when RF was used in 1998 and 1999. This color improvement ranged from 16 to 44% (mean = 28%). On average, fruits from RF were 0.8 lb softer and had 0.3% higher SSC than control fruits. Growers harvested more fruit earlier and in fewer picks for RF. Fruit size was not affected by RF. The influence of RF on orchard microclimate and quality and quantity of reflected light will be discussed.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 495E-496 ◽  
Author(s):  
Desmond R. Layne ◽  
Zhengwang Jiang ◽  
James W. Rushing

Replicated trials were conducted in summers of 1998 and 1999 at two commercial orchards (A and B) to determine the influence of a metalized, high-density polyethylene reflective film (SonocoRF, Sonoco Products Co., Hartsville, S.C.) and ReTain (Abbott Laboratories, Inc., N. Chicago, Ill.), on fruit red skin color and maturity of `Gala' apples. There were four experimental treatments: i) Control; ii) Reflective Film (RF); iii) ReTain; and iv) RF + ReTain. RF was laid 4 weeks before anticipated first pick date by laying a 5-ft-wide strip of plastic on either side of the tree row in the middle. ReTain was applied 4 weeks before harvest at the commercial rate in one orchard (A) and at 60% the commercial rate in the other orchard (B). At harvest, two 50-fruit samples were picked from each of four replicate blocks per treatment. All fruit were sized and visually sorted for color (1 = 0% to 25%, 2 = 26% to 50%, 3 = 51% to 75%, and 4 = 76% to 100% red surface, respectively). A 10-fruit subsample was selected following color sorting and evaluated for puncture pressure, soluble solids concentration (SSC) and starch hydrolysis. ReTain delayed maturity and reduced preharvest drop of `Gala'. Fruit from RF trees had a significantly greater percent red surface than fruit from trees not treated with RF. Fruit from RF + ReTain were significantly redder and had higher SSC than fruits from trees treated with ReTain alone. There were no differences in size, puncture pressure or starch hydrolysis between RF and RF + ReTain. RF appears to be a means to ensure greater redness in `Gala' treated with ReTain in South Carolina.


2002 ◽  
Vol 12 (4) ◽  
pp. 640-645 ◽  
Author(s):  
Desmond R. Layne ◽  
Zhengwang Jiang ◽  
James W. Rushing

Replicated trials were conducted in Summers 1998 and 1999 at two commercial orchards (A and B) to determine the influence of a metalized, high density polyethylene reflective film (SonocoRF) and aminoethoxyvinylglycine (ReTain), on fruit red skin coloration and maturity of `Gala' apples (Malus sylvestris var. domestica). There were four experimental treatments: 1) nontreated control; 2) reflective film (RF); 3) ReTain; and 4) RF + ReTain. RF was applied 4 weeks before anticipated start of harvest by laying a 5-ft-wide (150-cm) strip on each side of the tree row in the row middle. ReTain was applied 4 weeks before harvest at the commercial rate in one orchard and at 60% of the commercial rate in a second test. ReTain delayed fruit maturity. Fruit from RF trees had a significantly greater percent surface red color than fruit from trees not treated with RF. Fruit from RF + ReTain were significantly redder and had higher soluble solids concentration (SSC) than fruit from trees treated with ReTain alone. There were no differences in size, fruit firmness or starch content between fruit from RF and RF + Retain. RF appears to be a method to increase red skin coloration in `Gala' apples treated with ReTain without adversely impacting maturity.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 288-289 ◽  
Author(s):  
C.R. Van Der Heyden ◽  
P. Holford ◽  
G.D. Richards

A freestone, nonmelting flesh peach would offer the opportunity to transport freestone peaches to distant markets, and so open lucrative export opportunities. Peach [Prunus persica (L.) Batsch.] germplasm segregating for semi-freestone and clingstone has been identified among the nonmelting flesh, open-pollinated progeny of the Univ. of Florida selection, Fla. 9-20C. The segregation approached a 1 : 1 ratio. No significant differences were detected between the two categories for titratable acidity, soluble solids concentration, or skin color. However, the semi-freestone progeny had significantly softer flesh than their clingstone siblings, although not soft enough to justify reclassification of the flesh texture. No simple genetic model can be proposed for the inheritance of this new phenotype. The semi-freestone, nonmelting germplasm represents a step towards a less perishable, freestone cultivar for the fresh market, as well as an opportunity to study the reason for the rarity of the freestone/nonmelting phenotype among peaches.


2008 ◽  
Vol 88 (4) ◽  
pp. 753-758 ◽  
Author(s):  
Jennifer R DeEll ◽  
Dennis P Murr ◽  
Behrouz Ehsani-Moghaddam

The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, on the ripening and quality of Fantasia nectarines were examined. Fruit were harvested from two commercial orchards and subsequently exposed to 1 μL L-1 of 1-MCP for 24 h at 0°C. Following treatment, fruit were held at 0°C for 0, 2, or 4 wk, and then assessed for quality during a ripening period at 23°C. 1-MCP treatment improved postharvest firmness retention in nectarines after 0 and 2 wk at 0°C plus 4 days at 23°C. Soluble solids concentration (SSC) was lower in nectarines treated with 1 MCP and held for 0 or 4 wk at 0°C, compared with similar non-treated fruit. The peel ground color change from green to yellow was also delayed by 1-MCP. Nectarines treated with 1-MCP exhibited less CO2 and hydrophobic volatile production during 14 days at 23°C, compared with non-treated fruit. The overall inhibition of fruit ripening by 1-MCP appears transitory in Fantasia nectarines. Chilling injury was observed after 4 wk of storage at 0°C and 1-MCP-treated fruit had less visual chilling-related injury but greater chilling-induced flesh hardening. Further research is needed to determine the effects of 1-MCP on different chilling injury symptoms in nectarines. Key words: 1-MCP, fruit quality, ripening, storage, shelf-life, Prunus persica


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 533c-533 ◽  
Author(s):  
D. J. Makus ◽  
J. R. Morris

Supplemental calcium supplied foliariy as Ca glutarate, soil incorporated as gypsum, fertigated as CaNO3, in 3-way combination, or none at all, had no effect on fruit firmness, as measured by shear, reduced fruit decay by as much as 23%. over controls (1986-1988), and generally improved fruit Ca levels only in the combination treatment of 904 kg/ha. Fruit raw product quality (pulp pH, acidity, soluble solids concentration, and Hunter color values) were not consistently affected, although there were significant interactions between cvs Fern and Cardinal, harvest dates, holding time, and years. Supplemental Ca reduced fruit size, but tended to increase yield. In 1988, individual fruits were partitioned into upper/lower, dermal/interior, and upper/lower seeds (6 parts), Ca was the third most abundant mineral nutrient in receptacle tissue, but most abundant in seeds. Highest Ca levels were found (descendingly) in the seed, dermal, and interior pulp tissue, Ca was higher in the upper (stem) end. Differences in fruit Ca levels between cvs were found in the seeds and not the receptacle. No clear relationship was observed between fruit firmness, decay, and Ca level.


1991 ◽  
Vol 116 (6) ◽  
pp. 1025-1029 ◽  
Author(s):  
Vito Miccolis ◽  
Mikal E. Saltveit

External color, length, diameter, fresh weight, C02 production, internal C2HA concentration, flesh firmness, soluble solids concentration (SSC), flesh color, and seed cavity diameter were measured during fruit growth and maturation of seven melon cultivars (Cucumis melo L., Inodorus Group, Naud. cv. `Amarelo', `Golden Beauty Casaba', `Honey Dew', `Honey Loupe', `Juan Canary', `Paceco', and `Santa Claus Casaba') of known age. There was no increase in C02 production either during ripening (e.g., loss of firmness and increased SSC) or with increasing C2H4 levels in fruit from any of the seven cultivars. There was a significant decline in respiration only at the second sampling date, which ranged from 14 to 18 days after anthesis. Respiration measured 1 week later was substantially higher and was followed by a general decline. This post 14- to 18-day rise in respiration was not a climacteric since it occurred well in advance of other ripening characteristics, e.g., loss of firmness, increase in SSC, or rise in internal C2H4. The increase in internal C2H4. coincided with or followed attainment of full fruit size, while flesh softening and the rapid rise in SSC preceded the rise in internal C2H4, concentration. Respiration declined from 67 to 18 ml CO2/kg per hour by day 43 in all cultivars, except `Honey Dew' and `Honey Loupe'. Respiration in `Honey Loupe' remained above 23 ml CO2/kg per hour and showed a rise to 32 ml/kg per hour on day 53. Respiration in `Honey Dew' did not fall below 18 ml CO2/kg per hour until day 53. As with internal C2H4 levels, there was no correlation between changes in and any marked change in the other signs of ripening that were measured.


1999 ◽  
Vol 9 (1) ◽  
pp. 51-53 ◽  
Author(s):  
Craig Kallsen

Previous research has shown that nitrogen fertilization rates may influence fruit quality characteristics of navel oranges [(Citrus sinensis) (L.) Osbeck]. The objective of this study was to determine, for equal seasonal N applications, if the timing of the last seasonal nitrogen fertigation promotes early fruit maturity or affects fruit size. The study consisted of four treatments with the total seasonal allocation of nitrogen fertilizer applied by ≈1 May, 1 June, 1 July, and 1 Aug. in an experimental site in a commercial orange grove in the southern San Joaquin Valley of California. The source of nitrogen was a liquid calcium ammonium nitrate injected through the irrigation system. No significant treatment differences in soluble solids concentration, titratable acidity, the ratio of soluble solids concentration to titratable acidity, percent juice, fruit color and fruit diameter were detected in fruit sampled in October. Similarly, in September, no significant differences in leaf nitrogen were found among treatments. These results do not support the hypothesis that applying the total seasonal application of nitrogen early in the season results in earlier orange maturity or larger fruit size, at least not for trees that have leaf N in the optimum range.


1992 ◽  
Vol 117 (5) ◽  
pp. 784-787 ◽  
Author(s):  
B.D. Horton

Variability in maturity within a peach (Prunus persica, L. Batsch) fruit was estimated by measurements of force and the soluble solids concentration (SSC) at 16 coordinates around the peach at five maturity stages: 1) about one-half final swell (immature); 2) 85% final swell (green); 3) firm-ripe and similar to chip #3 of the Clemson Univ. system; 4) firm-ripe and similar to chip #5; and 5) tree-ripe. Firm-ripe 3 and 4 stages were firm enough to ship, but the tree-ripe stage was too soft. Firmness measured with a 4.7-mm-diameter penetrometer tip from two cultivars indicates a strong trend for the peach tip and cheeks to be firmer than tissue at other coordinates. Coordinates at the equator and around the stem end are generally firmer than coordinates at lat. 45°N, particularly in stages 3, 4, and 5. The SSC in juice from a cylinder of fruit adjacent to the puncture was higher at long. 90°E-W than at the sutures and higher at lat. 0° than at 70°S. Variance increased for force and decreased for SSC between maturity stages to the firm-ripe stage. The coordinate technique might be used to characterize and select cultivars that would be most suitable for once-over harvests.


2007 ◽  
Vol 17 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Jennifer R. DeEll ◽  
Jennifer T. Ayres ◽  
Dennis P. Murr

This study evaluated the effects of 1-methylcyclopropene (1-MCP) on ‘Empire’ and ‘Delicious’ apples (Malus ×domestica) in commercial controlled atmosphere (CA) storage for 12 months and in commercial cold storage for 6 months. Apples were harvested and delivered by growers to a local commercial storage facility. Four different grower lots were chosen for each of three ‘Empire’ and two ‘Delicious’ storage rooms. Fruit were treated with 1-MCP (≈0.8–1.0 ppm) for 24 hours, while control fruit samples were held in a similar nearby storage room. After treatment, control samples were placed with matching 1-MCP-treated samples into either CA (2.5% O2 + 2.5% CO2 at 2.2 °C or 0 °C for ‘Empire’ and ‘Delicious’, respectively) or air storage at 0 to 1 °C. Initial maturity was relatively uniform among the grower lots, with internal ethylene concentration (IEC) averaging less than 1 ppm for ‘Empire’ and 2 to 3 ppm for ‘Delicious’. IEC was lower in apples treated with 1-MCP after air (3 or 6 months) or CA (6, 9, or 12 months) storage, but this effect was reduced after a 14-day ripening period at 22 °C, and was less dramatic in fruit from CA than from air storage. Apples treated with 1-MCP were also firmer than non-treated fruit upon removal from air or CA storage, and this difference became greater with increased poststorage time at 22 °C. 1-MCP-treated apples stored in air had higher soluble solids concentration (SSC), while there was no significant effect of 1-MCP on SSC in fruit held in CA. Core browning developed in ‘Empire’ held in air for 6 months or in CA for 9 or 12 months, and in ‘Delicious’ after 9 or 12 months in CA. 1-MCP decreased the incidence of core browning in ‘Empire’, but increased the incidence in ‘Delicious’. There was no significant effect of 1-MCP on the incidence of internal browning and storage rots, which developed in both cultivars.


Sign in / Sign up

Export Citation Format

Share Document