scholarly journals Predicting Firmness of `York Imperial' Apples after Long-term Storage

1993 ◽  
Vol 3 (3) ◽  
pp. 318-322 ◽  
Author(s):  
Kathleen Evensen ◽  
Philip Hammer ◽  
Robert Crassweller ◽  
George Greene ◽  
Laura Lehman-Salada

We present a method for predicting firmness of `York Imperial' apples after air or controlled-atmosphere storage. Firmness and soluble solids content in freshly harvested fruit can be plotted on a graph showing a “decision line.” If the prestorage firmness and soluble solids coordinates for a given sample are above the decision line, then firmness after storage is predicted to be greater than the target value. Prestorage flesh firmness and soluble solids content were the best predictors of poststorage firmness. There was no significant improvement in firmness prediction when ethylene, starch, or other indicators of maturity were included.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 449b-449
Author(s):  
S.R. Drake ◽  
Tom Eisele

Red color of 2 strains (`Bisbee' and `Red Chief) of `Delicious' apples was increased (25%) by a 10 day delay beyond recommended harvest date. Color of `Oregon Spur' did not change during this 10 day period. Soluble solids content and size were also increased, but firmness decreased by 12%. In 2 of 3 years, firmness at harvest was 73 N or greater in all strains and these fruit lost little firmness during 9 months of CA. Poor firmness (<63 N) at harvest resulted in fruit with unacceptable firmness (53 N) after storage regardless of harvest time or strain. Loss in fruit quality was evident after a 5 day delay in atmosphere establishment with no further loss after a 10 day delay. `Oregon Spur' had the best color regardless of harvest, followed by `Bisbee' and `Red Chief. All strains (`Oregon Spur', `Bisbee' and `Red Chief) had good quality after long term CA. Sensory panelists could not distinguish flavor differences between strains, harvest dates or delay in storage establishment.


2008 ◽  
Vol 18 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Jim Hancock ◽  
Pete Callow ◽  
Sedat Serçe ◽  
Eric Hanson ◽  
Randy Beaudry

Controlled-atmosphere storage had little effect on the quality of fruit of eight cultivars held under 2 kPa oxygen (O2) and 8 kPa carbon dioxide (CO2) versus ambient air. ‘Elliott’ fruit harvested from bushes with only 30% ripe fruit had significantly better storage quality than fruit picked later; however, there was no significant difference in the storage life of fruit that was stored fully blue versus partially green. Fruit from the first harvest of four cultivars had superior storage quality to that of the second. In one comparison of the long-term storability of nine cultivars, ‘Bluegold’, ‘Brigitta’, and ‘Legacy’ performed the best, storing for 4 to 7 weeks. In another postharvest trial of 17 cultivars, ‘Brigitta’ stored the longest (8 weeks) followed by ‘Aurora’ and ‘Draper’ (7 weeks). The most resistant genotypes to Alternaria spp. were ‘Brigitta’, ‘Aurora’, ‘Elliott’, and ‘Draper’, whereas the most resistant genotypes to Colletotrichum spp. were ‘Elliott’, ‘Brigitta’, ‘Toro’, ‘Draper’, and ‘Bluejay’.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 1062-1065 ◽  
Author(s):  
John M. DeLong ◽  
Robert K. Prange ◽  
Peter A. Harrison

`Redcort Cortland' and `Redmax' and `Summerland McIntosh' apples (Malus ×domestica Borkh.) were treated with 900 nL·L-1 of 1-methylcyclopropene (1-MCP) for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O2 and <2.5 kPa CO2 or in an air (RA) environment for up to 9 months. After 4.5 months, half of the fruit were treated with a second 900 nL·L-1 1-MCP application in air at 3 °C for 24 hours and then returned to RA or CA storage. At harvest and following removal at 3, 6, and 9 months and a 7-day shelf life at 20 °C, fruit firmness, titratable acidity (TA) and soluble solids content (SSC) were measured, while internal ethylene concentrations (IEC) in the apple core were quantified after 1 day at 20 °C. Upon storage removal and following a 21-day shelf life at 20 °C, disorder incidence was evaluated. 1-MCP-treated apples, particularly those held in CA-storage, were more firm and had lower IEC than untreated fruit. Higher TA levels were maintained with 1-MCP in all three strains from both storages, while SSC was not affected. Following the 6- and/or 9-month removals, 1-MCP suppressed superficial scald development in all strains and reduced core browning and senescent breakdown in RA-stored `Redmax' and `Summerland' and senescent breakdown in RA-stored `Redcort'. 1-MCP generally maintained the quality of `Cortland' and `McIntosh' fruit held in CA and RA environments (particularly the former) to a higher degree than untreated apples over the 9-month storage period. A second midstorage application of 1-MCP at 3 °C did not improve poststorage fruit quality above a single, prestorage treatment.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 358
Author(s):  
Tal Goldberg ◽  
Harel Agra ◽  
Ruth Ben-Arie

The effect of ‘Hayward’ kiwifruit maturity at harvest on fruit quality during long-term storage at −0.5 °C was evaluated by harvesting the fruit several times, at different stages of maturity. The progress of maturation on the vine was monitored weekly from 136 DAFB (days after full bloom). Fruit were harvested for storage at three points and stored for 3–6 months in regular air (RA), or for 6–10 months in a controlled atmosphere (CA), with or without prestorage exposure to 1-methylcyclopropene (1-MCP). The softening rate under both storage regimes decreased with the advance in fruit maturation on the vine, as indicated by increasing soluble solids content (SSC), and declining firmness. As a result, the fruit from the first harvest (152 DAFB), which were the firmest at harvest, were the softest at the end of both storage regimes. Delaying harvest also decelerated the decline in acidity during storage, so that fruit picked last maintained the highest titratable acidity (TA) upon removal from storage. The overall fruit quality after shelf life, following prolonged storage in either RA or CA, was improved by delaying harvest to late November (ca. 200 DAFB). The harvest criteria for fruit with the best storage potential were dry matter (DM) > 17%, SSC > 7%, TA 2.0–2.6%, with more than 40% of the DM non soluble. From a commercial aspect the rule should therefore be ‘Last in, last out’ (LILO).


Author(s):  
Teresa Deuchande ◽  
Susana M.P. Carvalho ◽  
Christian Larrigaudière ◽  
Marta W. Vasconcelos

Long term storage of a variety of crops as well as long-distance transport, has allowed meeting the consumers' expectations in the supply of many types of fresh fruits and vegetables throughout the year. This is only possible with the use of several postharvest technologies. This chapter starts with a brief historical context followed by an overview of the technologies used for fruits and vegetables storage, including refrigerated and controlled atmosphere (CA) storage as well as the most recently developed technologies for storing these produces. We also address the innovation requirements in the refrigeration systems when integrating cold storage with CA, including the need for higher refrigeration capacity, use of air tight storage chambers, CO2 scrubbers and atmosphere generators. The effects of these methodologies on fruit physiology and quality during storage are further discussed. Finally, the current recommendations for long term storage using ‘Rocha' pear as a case study are presented.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 491
Author(s):  
Tatenda Gift Kawhena ◽  
Olaniyi Amos Fawole ◽  
Umezuruike Linus Opara

The efficacy of dynamic controlled atmosphere technologies; repeated low oxygen stress (RLOS) and dynamic controlled atmosphere-chlorophyll fluorescence (DCA-CF) to control superficial scald development on ‘Granny Smith’ apples during long-term storage was studied. Fruit were stored for 2, 4, 6, 8, and 10 months at 0 °C in DCA-CF (0.6% O2 and 0.8% CO2), regular atmosphere (RA)(≈21% O2 and 90–95% RH), and RLOS treatments: (1) 0.5% O2 for 10 d followed by ultra-low oxygen (ULO) (0.9% O2 and 0.8% CO2) for 21 d and 0.5% O2 for 7 d or (2) 0.5% O2 for 10 d followed by controlled atmosphere (CA) (1.5% O2 and 1% CO2) for 21 d and 0.5% O2 for 7 d. Development of superficial scald was inhibited for up to 10 months and 7 d shelf life (20 °C) under RLOS + ULO and DCA-CF treatments. Apples stored in RLOS + ULO, RLOS + CA, and DCA-CF had significantly (p < 0.05) higher flesh firmness and total soluble solids. The RLOS phases applied with CA or ULO and DCA-CF storage reduced the development of superficial scald by possibly suppressing the oxidation of volatiles implicated in superficial scald development.


HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1322-1324 ◽  
Author(s):  
P. Guy Lévesque ◽  
Jennifer R. DeEll ◽  
Dennis P. Murr

Sequential decreases or increases in the levels of O2 in controlled atmosphere (CA) were investigated as techniques to improve fruit quality of `McIntosh' apples (Malus ×sylvestris [L.] Mill. var. domestica [Borkh.] Mansf.), a cultivar that tends to soften rapidly in storage. Precooled fruit that were harvested at optimum maturity for long-term storage were placed immediately in different programmed CA regimes. In the first year, CA programs consisted of 1) `standard' CA (SCA; 2.5–3.0% O2 + 2.5% CO2 for the first 30 d, 4.5% CO2 thereafter) at 3 °C for 180 d; 2) low CO2 SCA (2.5–3.0% O2 + 2.5% CO2) at 3 °C for 60 d, transferred to low O2 (LO; 1.5% O2 + 1.5% CO2) at 0 or 3 °C for 60 d, and then to ultralow O2 (ULO; 0.7% O2 + 1.0% CO2) at 0 or 3 °C for 60 d; and 3) ULO at 3 °C for 60 d, transferred to LO at 0 or 3 °C for 60 d, and then to SCA or low CO2 SCA at 0 or 3 °C for 60 d. In the second year, the regimes sequentially decreasing in O2 were compared with continuous ULO and SCA. After removal from storage, apples were held in ambient air at 20 °C for a 1-week ripening period. Fruit firmness was evaluated after 1 and 7 d at 20 °C, whereas the incidence of physiological disorders was assessed only after 7 d. Lowering the temperature while decreasing O2 was the best CA program with significant increased firmness retention during storage and after the 1-week ripening period. Reduced incidence of low O2 injury in decreasing O2 programs and absence of core browning at the lower temperature were also observed.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 593c-593
Author(s):  
Laura J. Lehman ◽  
George M. Greene

A two year study of `Golden Delicious' and `York Imperial' apple responses to delayed cooling and CA storage imposition after harvest was completed in 1991. Apples from six to eight commercial orchards were harvested at an acceptable maturity level for long-term storage, subjected to a delay in refrigeration (0,3, or 6 days) followed by a delay in CA storage imposition (0,14, or 28 days), and then stored at 0°c, 2.4% oxygen, and 1.6% carbon dioxide for up to eight months. Fruit acidity, soluble solids content, bitter pit incidence, scald, internal breakdown, and the development of low oxygen injury were not influenced by the delays. Delays often resulted in more rot and excessive weight loss during storage. Delays in both cooling and CA storage imposition had an additive effect on fruit softening, such that the longest delays resulted in the softest fruit.


2010 ◽  
Vol 16 (4) ◽  
pp. 343-350 ◽  
Author(s):  
M. Guerra ◽  
P.A. Casquero

Two strategies, summer pruning and postharvest Ca treatment, were studied in apple (Malus domestica Borkh) cv. ‘Reinette du Canada’ in order to analyze its effect on the fruit quality during storage. Summer pruning and Ca treatment reduced external and internal bitter-pits; so after 180 days of storage, both treatments decreased external bitter-pit by 10.0% and 16.7%, respectively. Summer pruning influenced color, firmness, total soluble solids and titratable acidity (TA) of fruit during storage, whereas Ca treatment only affected firmness and TA. Fruit from pruned trees had significant lower K and Mg than those from unpruned trees and Ca treatment increased Ca content. Orchard management, by means of summer pruning, combined with Ca postharvest application would be useful to prevent losses due to bitter-pit during storage in commercial orchards. However, in organic orchards, summer pruning would be the ecological alternative to decrease bitter-pit incidence during storage in high quality apple cv. ‘Reinette du Canada’. K/Ca ratio, on the peel at harvest, turned out to be the best parameter to correlate with external and internal bitter-pits during storage; so this ratio would be useful to predict bitter-pit on long-term storage.


Sign in / Sign up

Export Citation Format

Share Document