scholarly journals Comparison of Commercially and Locally Produced Encarsia formosa Gahan on the Control of Sweetpotato Whitefly on Poinsettias

1994 ◽  
Vol 4 (3) ◽  
pp. 295-298 ◽  
Author(s):  
R.W. McMahon ◽  
R.K. Lindquist ◽  
B.D. Baith ◽  
T.L. Makin ◽  
M.L. Casey

A 2-year demonstration study was conducted to compare the effectiveness of two sources of Encarsia formosa (EF) on the biological control of the sweetpotato whitefly (SPWF) (Bemisia tabaci Gennadius) on poinsettias (Euphorbia pulcherrima Wild.). Commercially produced EF were raised on the greenhouse whitefly (GHWF) (Trialuerodes vaporariorum Westwood), while the locally produced EF were raised on the SPWF. Results showed that SPWF populations were reduced considerably both years, and maximum nymph parasitism ranged from 60% to >80%. No large differences were observed in the ability of EF to control SPWF populations whether raised on SPWF or GHWF nymphs. This study suggests that there is potential for controlling SPWF populations on poinsettia by EF in conjunction with an integrated pest management (IPM) program.

1992 ◽  
Vol 2 (4) ◽  
pp. 457-460 ◽  
Author(s):  
R.W. McMahon ◽  
R.K. Lindquist ◽  
M.L. Casey ◽  
A.C. Witt ◽  
S.H. Kinnamon

A demonstration study was conducted to compare the effectiveness of biological and chemical control treatments on the greenhouse whitefly (GHWF) (Trialeurodes vaporariorum, Westwood) using poinsettia (Euphorbia pulcherrima Wild.) stock plants. Two identical greenhouse compartments, each containing 84 stock plants, were used. In the biological control compartment, three biweekly releases of Encarsia formosa (EF) were made, while in the chemical control compartment eight weekly applications of resmethrin or acephate aerosol treatments were made. Results showed that overall greenhouse whitefly populations in the chemical control compartment were slightly lower than in the biological control compartment. Cuttings taken from stock plants in the biological control compartment at the end of the experiment were commercially acceptable with regard to the presence of GHWF adults. Chemical names used: O,S-dimethyl acetylphosphoramidothioate (acephate), [5-(phenylmethyl)-3-furanyl] methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropane-carboxylate (resmethrin).


1994 ◽  
Vol 29 (2) ◽  
pp. 222-230 ◽  
Author(s):  
Tong-Xian Liu ◽  
Ronald D. Oetting ◽  
G. David Buntin

Patterns of diel flight activity of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and sweetpotato whitefly, Bemisia tabaci (Gennadius), were investigated on poinsettia, Euphorbia pulcherrima Willd., and gerbera daisy, Gerbera jamesonii H. Bolus, under greenhouse and environmentally controlled conditions. Adult flight activity was monitored at 2-h intervals (from 0700 to 2100 h EST) at various heights using yellow sticky traps. Traps placed 5 cm above the top of the plant canopy caught more adults of both species than traps placed higher. The daily patterns of catches of T. vaporariorum and B. tabaci adults in the greenhouse were similar and were unimodal with peak catches occurring between 0900–1300 h. Numbers of adults caught on the sticky traps in the greenhouse were correlated with temperature and relative humidity for T. vaporariorum, but not for B. tabaci. Few adults were caught during the dark hours (from 2100 to 0700 h). Under constant temperatures of 20°, 25°, and 30°C, the flight activity patterns of both whitefly species were unimodal, with peak catches of T. vaporariorum and B. tabaci occurring in the morning and afternoon, respectively. Differences in temperature did not significantly alter the pattern of catches of adults on sticky traps. The lowest temperature for initiation of whitefly flight was 16–17°C for T. vaporariorum, and 17–18°C for B. tabaci.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2018 ◽  
Vol 71 ◽  
pp. 112-120 ◽  
Author(s):  
Abie Horrocks ◽  
Paul A. Horne ◽  
Melanie M. Davidson

An integrated pest management (IPM) strategy was compared with farmers’ conventional pest management practices on twelve spring- and autumn-sown seed and forage brassica crops. Demonstration trials were conducted in Canterbury from spring 2015 to autumn 2017 by splitting farmers’ paddocks in half and applying the two management approaches side by side. A farmer participatory approach was used, with management decisions based on monitoring pests and biological-control agents. Farmer and adviser training with a focus on monitoring and identification was carried out. Biological-control agents capable of contributing to pest control were identified in all brassica crops. There was a 35% reduction in the number of insecticides applied under IPM compared with conventional management, negligible crop yield differences, and the type of insecticides applied was different. IPM adoption at these farms was high by the end of the 3-year project with 11 of the 12 farmers implementing IPM across 90—100% of their brassica crops. This project was a starting point for an industry-wide change of practice to IPM, which has become more widespread since its completion.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Musa Khan ◽  
Ze-Yun Fan ◽  
Dylan O’Neill Rothenberg ◽  
Jing Peng ◽  
Muhammad Hafeez ◽  
...  

Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when Bemisia tabaci first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus Cordyceps fumosorosea was applied to third instar nymphs of B. tabaci previously exposed to UV-A light, the LC50 was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of Encarsia formosa against 24 h UV-A-exposed third instar nymphs of B. tabaci increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following E. formosa exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of E. formosa increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of B. tabaci and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.


2019 ◽  
Vol 112 (4) ◽  
pp. 1581-1586
Author(s):  
Huifang Guo ◽  
Yufeng Qu

Abstract Compared with the numerous natural enemies against insect pests that have been identified, the commercialization of natural biological control resources remains very limited. To increase the use of natural enemies for biological control, determining how to improve the low efficacy, slow speed, and high cost of natural enemies is very important. Mediterranean species of The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodoidea), increasingly threatens many crops in China, and control primarily depends on chemical insecticides. Here, the effect of ethanol extracts from two plants, Agrimonia pilosa (Ledeb) (Rosales: Rosaceae) and Melia azedarach (Linn) (Meliaceae: Melia), on predominant natural enemies of B. tabaci was investigated using a leaf dipping or spraying method. The results showed that the ethanol extract of A. pilosa significantly improved the infectivity of the fungus Isaria javanica (Friedrichs & Bally) (Ascomycota: Hypocreales), and the mortality of whiteflies caused by the combination of fungus (105 spores/mL) with the extract of A. pilosa (2 mg/mL dried powder of A. pilosa containing 0.0942 mg/mL total polyphenols) was 81.6%, which was significantly higher than that caused by the fungus only. However, the ethanol extract of M. azedarach had no effect on fungus infectivity. Additionally, insecticide tolerance of the predator Pardosa pseudoannulata was also significantly improved by the extract of A. pilosa. The longevity of the parasitoid Encarsia formosa was not affected by the extracts. These findings indicate that the extract of A. pilosa played a dual role that included improving pathogenic fungi infectivity and insecticidal tolerance of a predator and thus could be a synergist in the biological control of B. tabaci.


Sign in / Sign up

Export Citation Format

Share Document