scholarly journals Phototoxicity of Ultraviolet-A against the Whitefly Bemisia tabaci and Its Compatibility with an Entomopathogenic Fungus and Whitefly Parasitoid

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Muhammad Musa Khan ◽  
Ze-Yun Fan ◽  
Dylan O’Neill Rothenberg ◽  
Jing Peng ◽  
Muhammad Hafeez ◽  
...  

Ultraviolet (UV) radiation significantly affects insect life and, as a result, has been widely used to control different invertebrate pests. The current results demonstrate that when Bemisia tabaci first instar nymphs are exposed to UV-A light for 12, 24, 48, and 72 h, their developmental and biological parameters are negatively affected by UV-A exposure; the effect increased with an increase in exposure time. We hypothesized that UV-A light is compatible with other biological control agents. Results showed that when the entomopathogenic fungus Cordyceps fumosorosea was applied to third instar nymphs of B. tabaci previously exposed to UV-A light, the LC50 was 3.4% lower after 72 h of exposure to UV-A light compared to the control. However, when the fungus was exposed to UV-A light, its virulence decreased with an increase in UV-A exposure time. The parasitism rate of Encarsia formosa against 24 h UV-A-exposed third instar nymphs of B. tabaci increased while the adult emergence from parasitized nymphs was not affected after UV-A light exposure. Parasitism rate was significantly reduced however following E. formosa exposure to UV-A light; but again, adult emergence was not affected from parasitized nymphs. The percentage mortality of E. formosa increased with increasing exposure time to UV-A light. The enzyme activity of SOD, CAT, GST, and AChE and the energy reserve contents were negatively affected due to UV-A exposure. Collectively, this study has demonstrated that UV-A light significantly suppresses the immune system of B. tabaci and that UV-A light is compatible with other biological control agents if it is applied separately from the biological agent.

Insects ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 425 ◽  
Author(s):  
Da Ou ◽  
Li-Mei Ren ◽  
Yuan Liu ◽  
Shaukat Ali ◽  
Xing-Min Wang ◽  
...  

Biological control is an effective method for whitefly management compared to the potential problems caused by chemical control, including environmental pollution and the development of resistance. Combined use of insect parasitoids and entomopathogenic fungi has shown high efficiency in Bemisia tabaci control. Here, we assessed the impacts of an entomopathogenic fungus, Cordyceps javanica, on the parasitism rate of a dominant whitefly parasitoid, Eretmocerus hayati, and for the first time also compared their separate and combined potential in the suppression of B. tabaci under semi-field conditions. Six conidial concentrations of C. javanica (1 × 103, 1 × 104, 1 × 105, 1 × 106, 1 × 107 and 1 × 108 conidia/mL) were used to assess its pathogenicity to the pupae and adults of E. hayati. Results showed that the mortality of E. hayati increased with higher concentrations of C. javanica, but these higher concentrations of fungus had low pathogenicity to both the E. hayati pupae (2.00–28.00% mortality) and adults (2.67–34.00% mortality) relative to their pathogenicity to B. tabaci nymphs (33.33–92.68%). Bioassay results indicated that C. javanica was harmless (LC50 = 3.91 × 1010) and slightly harmful (LC50 = 5.56 × 109) to the pupae and adults of E. hayati respectively on the basis of IOBC criteria, and that E. hayati could parasitize all nymphal instars of B. tabaci that were pretreated with C. javanica, with its rate of parasitism being highest on second-instar nymphs (62.03%). Interestingly, the parasitoids from second and third-instar B. tabaci nymphs infected with C. javanica had progeny with increased longevity and developmental periods. Moreover, experimental data from 15 day semi-field studies indicate that combined application of C. javanica and E. hayati suppresses B. tabaci with higher efficiency than individual applications of both agents. Therefore, combined applications of C. javanica (1 × 108 conidia/mL) and E. hayati is a more effective and compatible biological control strategy for management of B. tabaci than using either of them individually.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 630
Author(s):  
Emily Silva Araujo ◽  
Alex S. Poltronieri ◽  
Carolina G. Poitevin ◽  
José Manuel Mirás-Avalos ◽  
Maria Aparecida Cassilha Zawadneak ◽  
...  

The European pepper moth, Duponchelia fovealis (Lepidoptera: Crambidae), is a key pest in strawberry production. Entomopathogenic fungi (EF) and parasitoids of the Trichogrammatidae family are effective biological control agents of this pest with the potential to be used jointly for improved efficacy. This study aims to evaluate the susceptibility of Trichogramma atopovirilia and Trichogramma pretiosum to two Beauveria bassiana strains (B2 and B3) and two commercial bioinsecticides (Bovemax® and Methamax®) by applying them to D. fovealis eggs in pre- and post-parasitism periods. Pre-parasitism application of B2 and B3 did not affect the percentage of D. fovealis eggs parasitized by either Trichogramma species, except in the case of T. atopovirilia when eggs were sprayed with B3 at 1.5 × 105 conidia mL−1 (16.7% less than the control). In contrast, eggs sprayed with 1.5 × 108 conidia mL−1 of the commercial bioinsecticides were not parasitized by any Trichogramma species. Overall, the EF tested reduced the parasitism rate, adult emergence, and longevity of Trichogramma adults by less than 30% in all cases. The adverse effects of the B. bassiana strains and commercial products on the biological traits of both Trichogramma species were minimal, meaning that these agents can be used jointly in D. fovealis control strategies.


2011 ◽  
Vol 46 (6) ◽  
pp. 669-671 ◽  
Author(s):  
Adrise Medeiros Nunes ◽  
Dori Edson Nava ◽  
Fernanda Appel Müller ◽  
Rafael da Silva Gonçalves ◽  
Mauro Silveira Garcia

The objective of this work was to study the biology and parasitic potential of Doryctobracon areolatus on larvae of Anastrepha fraterculus. The egg-adult period, the sex ratio, the longevity, the pupal viability, and the parasitism rate of D. areolatus were determined in laboratory, using A. fraterculus as host. The parasitoid development from oviposition to adult emergence required 25.00±1.70 days, the sex ratio was 0.62±0.09, and the mean longevity was 16.36±3.62 days for males and 10.24±1.71 days for females. The mean parasitism rate was 53.50±8.93%, varying from 41.60 to 68.60%, which shows the potential of this parasitoid for biological control of A. fraterculus.


2019 ◽  
Vol 112 (4) ◽  
pp. 1581-1586
Author(s):  
Huifang Guo ◽  
Yufeng Qu

Abstract Compared with the numerous natural enemies against insect pests that have been identified, the commercialization of natural biological control resources remains very limited. To increase the use of natural enemies for biological control, determining how to improve the low efficacy, slow speed, and high cost of natural enemies is very important. Mediterranean species of The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodoidea), increasingly threatens many crops in China, and control primarily depends on chemical insecticides. Here, the effect of ethanol extracts from two plants, Agrimonia pilosa (Ledeb) (Rosales: Rosaceae) and Melia azedarach (Linn) (Meliaceae: Melia), on predominant natural enemies of B. tabaci was investigated using a leaf dipping or spraying method. The results showed that the ethanol extract of A. pilosa significantly improved the infectivity of the fungus Isaria javanica (Friedrichs & Bally) (Ascomycota: Hypocreales), and the mortality of whiteflies caused by the combination of fungus (105 spores/mL) with the extract of A. pilosa (2 mg/mL dried powder of A. pilosa containing 0.0942 mg/mL total polyphenols) was 81.6%, which was significantly higher than that caused by the fungus only. However, the ethanol extract of M. azedarach had no effect on fungus infectivity. Additionally, insecticide tolerance of the predator Pardosa pseudoannulata was also significantly improved by the extract of A. pilosa. The longevity of the parasitoid Encarsia formosa was not affected by the extracts. These findings indicate that the extract of A. pilosa played a dual role that included improving pathogenic fungi infectivity and insecticidal tolerance of a predator and thus could be a synergist in the biological control of B. tabaci.


2020 ◽  
Vol 49 (4) ◽  
pp. 823-828
Author(s):  
Alex N Neidermeier ◽  
Darrell W Ross ◽  
Nathan P Havill ◽  
Kimberly F Wallin

Abstract Two species of silver fly, Leucopis argenticollis (Zetterstedt) and Leucopis piniperda (Malloch) (Diptera: Chamaemyiidae), from the Pacific Northwest region of North America have been identified as potential biological control agents of hemlock woolly adelgid (Hemiptera: Adelgidae: Adelges tsugae Annand) in eastern North America. The two predators are collectively synchronized with A. tsugae development. To determine whether adult emergence of the two species of silver fly are also synchronized with one another, we collected adult Leucopis which emerged from A. tsugae-infested western hemlock [Pinaceae: Tsuga heterophylla (Raf.) Sarg.] from four sites in the Pacific Northwest over a 29-d period. Specimens were collected twice daily in the laboratory and identified to species using DNA barcoding. The study found that more adult Leucopis were collected in the evening than the morning. Additionally, the daily emergences of adults over the 29-d sampling period exhibited sinusoidal-like fluctuations of peak abundance of each species, lending evidence to a pattern of temporal partitioning. This pattern could have logistical implications for their use as biological control agents in eastern North America, namely the need to release both species for maximum efficacy in decreasing A. tsugae populations.


2001 ◽  
Vol 91 (5) ◽  
pp. 369-387 ◽  
Author(s):  
S. Schmidt ◽  
I.D. Naumann ◽  
P.J. De Barro

AbstractAfter the recent introduction of the pest whitefly Bemisia tabaci (Gennadius) biotype B into Australia, research was undertaken to study the parasitoids of the long established native B. tabaci and Trialeurodes vaporariorum (Westwood). The genus Encarsia species which are important biological control agents of whiteflies and hard scales. The taxonomy of the Encarsia species attacking B. tabaci and T. vaporariorum in Australia and the Pacific Islands is revised. DNA sequencing of the 28S D2 ribosomal DNA was used characterize species. Sixteen species are recognized, with 12 occurring in Australia, eight in the Pacific region, and four in both regions. All except one species (E. formosa Gahan) are new records for Australia. Four species are described as new from Australia: E. accenta & Naumann sp. n., E. adusta Schmidt & Naumann sp. n., E. oakeyensis Schmidt & Naumann sp. n., and E. ustulata Schmidt & Naumann sp. n. Diagnostic descriptions are given for all species and each species is illustrated. pictorial key is provided to allow the identification of species by non-specialists.


2018 ◽  
Vol 48 (7) ◽  
Author(s):  
Geraldo Salgado-Neto ◽  
Priscila Andre Sanz-Veiga ◽  
Marcos André Braz Vaz

ABSTRACT: This note is the first report on the infection of adult stage of Melanagromyza sojae Zehntner, 1900 (Diptera: Agromyzidae) by the entomopathogenic fungus Ophiocordyceps dipterigena (Hypocreales: Ophiocordycipitaceae) (Berk. & Broome) G. H. Sung, J.M. Sung, Hywel-Jones & Spatafora, in subtropical Brazil. Entomopathogenic fungi, which attack dipteran insects, are of great scientific and economic importance mainly due to their potential as biological control agents of insect pests. Our findings bring new perspectives on the geographical distribution and host range of Ophiocordyceps dipterigena. We emphasize the need of further studies and research on new biological control agents of agricultural pests such as the soybean stem miner fly.


1994 ◽  
Vol 4 (3) ◽  
pp. 295-298 ◽  
Author(s):  
R.W. McMahon ◽  
R.K. Lindquist ◽  
B.D. Baith ◽  
T.L. Makin ◽  
M.L. Casey

A 2-year demonstration study was conducted to compare the effectiveness of two sources of Encarsia formosa (EF) on the biological control of the sweetpotato whitefly (SPWF) (Bemisia tabaci Gennadius) on poinsettias (Euphorbia pulcherrima Wild.). Commercially produced EF were raised on the greenhouse whitefly (GHWF) (Trialuerodes vaporariorum Westwood), while the locally produced EF were raised on the SPWF. Results showed that SPWF populations were reduced considerably both years, and maximum nymph parasitism ranged from 60% to >80%. No large differences were observed in the ability of EF to control SPWF populations whether raised on SPWF or GHWF nymphs. This study suggests that there is potential for controlling SPWF populations on poinsettia by EF in conjunction with an integrated pest management (IPM) program.


Sign in / Sign up

Export Citation Format

Share Document