scholarly journals Barriers for Introgression of Solanum ochranthum into Tomato via Somatic Hybrids

2001 ◽  
Vol 126 (5) ◽  
pp. 587-592 ◽  
Author(s):  
John R. Stommel

Solanum ochranthum Dunal is a nontuber bearing wild relative of the cultivated tomato (Lycopersicon esculentum Mill.), and a potential source of new genes for disease and pest resistance. Because S. ochranthum is sexually isolated from tomato, somatic hybrids between tomato (PI 367942; L. esculentum Mill. var. cerasiforme (Dunal) A. Gray VFNT cherry × L. peruvianum (L.) Mill. backcrossed to VFNT cherry) and S. ochranthum (LA2117) were developed previously to overcome these crossing barriers. Attempts to backcross these hybrids to tomato have been unsuccessful. Pollen fertility and mitotic and meiotic studies in tomato + S. ochranthum somatic hybrids determined the cause of the sterility of the somatic hybrids and identified hybrids with moderate fertility. Chromosome counts of dividing root tip cells delineated tetraploid (2n = 4x = 48) and hexaploid (2n = 6x = 72) genotypes and aneuploidy in these hybrids. Meiotic analysis of developing microspores confirmed the presence of precocious division and laggard chromosomes at anaphase in both hexaploid and tetraploid hybrids. Bridges were observed in hexaploids at anaphase I and II and multivalent configurations were observed at diakinesis. Multivalents and univalents were evident in nearly all cells examined, proving that the two genomes are homoeologous. Aberrant microsporocytes with five to six developing microspores were noted in hexaploid hybrids. The occurrence of homoeologous pairing between chromosomes of both fusion parents is advantageous to effect recombination between these isolated species. However, the negative effects of multivalent formation and univalents likely contributed to observed sterility in these first generation fusion hybrids. Low to moderate levels of pollen fertility (0% to 52%) were found in tetraploid hybrids, while little or no viable pollen (0% to 4%) was observed in hexaploid somatic hybrids.

1980 ◽  
Vol 22 (2) ◽  
pp. 260-260 ◽  
Author(s):  
I. S. Grover ◽  
P. S. Tyagi

The perusual of literature reveals the desirability to screen the mutagenicity of pesticides. The present report deals with the cytological aberrations and chlorophyll mutations induced by Thiodan, Folithion, Lebaycid and Kitazin, employing barley as the test material. The chromosomal aberrations were examined both at mitotic and meiotic level. The root tip cells from pesticide treated barley grains revealed various abnormalities at metaphase including fragmentation, unequal chromosome, chromosomes with displaced satellite and increased number of chromosome. The laggards, bridges, tripolarity, tetrapolarity and micronuclei were seen at later stages. A positive correlation between dose and aberration was noticed. The meiotic analysis of PMC's from plants raised from pesticide treated barley grains, revealed quadrivalents and univalents at metaphase-I. Anaphase-I was atypical in having unequal distribution, laggards, bridges — single or double. The persistent bridges at telophase and micronuclei were not unfrequent. The pollen fertility was reduced. — M2 analysis at the seedling stage revealed albina, xantha and tigrina mutants. The tigrina's were more frequent. Lebaycid was the most effective while Thiodan was the most efficient.


2010 ◽  
Vol 73 (5) ◽  
pp. 949-954 ◽  
Author(s):  
W. Kwankua ◽  
S. Sengsai ◽  
C. Kuleung ◽  
N. Euawong

2007 ◽  
Vol 49 (4) ◽  
pp. 481-486 ◽  
Author(s):  
Jian-You Li ◽  
Ai-Liang Jiang ◽  
Wei Zhang

Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 36-43 ◽  
Author(s):  
K. Kerby ◽  
J. Kuspira

To help elucidate the origin of the B genome in polyploid wheats, karyotypes of Triticum turgidum, Triticum monoccum, and all six purported B genome donors were compared. The analysis utilized a common cytological procedure that employed the most advanced equipment for the measurement of chromosome lengths at metaphase in root tip cells. A comparison of the karyotypes of T. turgidum and T. monococcum permitted the identification of B genome chromosomes of T. turgidum. These consist of two SAT pairs, one ST pair, three SM pairs, and one M pair of homologues. Comparisons of the chromosomes of the B genome of T. turgidum with the karyotypes of the six putative B genome donors showed that only the karyotype of Aegilops searsii was similar to the one deduced for the donor of the B genome in T. turgidum, suggesting that Ae. searsii is, therefore, the most likely donor of the B genome to the polyploid wheats. Support for this conclusion has been derived from geographic, DNA-hybridization, karyotype, morphological, and protein data reported since 1977. Reasons why the B genome donor has not been unequivocally identified are discussed.Key words: phylogeny, karyotypes, Triticum turgidum, Triticum monococcum, B genome, B genome donors.


Nature ◽  
1949 ◽  
Vol 164 (4178) ◽  
pp. 930-930 ◽  
Author(s):  
J. CHAYEN

1992 ◽  
Vol 103 (4) ◽  
pp. 989-998 ◽  
Author(s):  
E.P. Eleftheriou ◽  
B.A. Palevitz

The relationship between microfilaments (Mfs) and microtubules (Mts) in the organization of the preprophase band (PPB) was investigated in Allium root tip cells subjected to treatment with cytochalasin D (CD). Mts and Mfs were visualized by indirect immunofluorescence and various parameters such as PPB width were analyzed quantitatively. In control samples, the PPB first appears as a wide Mt band that progressively narrows to an average width of 4 micrometre in mid-prophase. Randomly oriented Mfs are present throughout the cytoplasm of most interphase control cells. Preprophase and prophase cells, however, contain cortical Mfs arranged parallel to the PPB. The Mfs initially occupy much of the cortex but in most cells they progressively become restricted to an area wider than the PPB. In the presence of CD, the PPB fails to narrow and remains at least two-fold wider than in control cells. PPB width expressed as a percentage of nuclear or cell length also increases compared to controls. Widening is concentration dependent, and the effect of 10 micromolar CD is near maximal only 15 min after application of the drug. This rapid response suggests that a rebroadening of already condensed PPBs takes place. After as little as 15 min in CD, Mfs are replaced by many small specks and rods. Dual localizations of both Mts and Mfs show that prophase cells contain broad PPBs without Mfs. The rapid disorganization of Mfs, by CD, therefore coincides with the rebroadening of PPBs. CD-treated cells in metaphase, anaphase and telophase contain larger actin aggregates at the poles, as previously reported. The results indicate that Mfs play an important role in the narrowing of the PPB, which in turn is essential for determination of the exact position of the plane of division. They also indicate that movement of intact Mts is important in PPB organization.


Sign in / Sign up

Export Citation Format

Share Document