preprophase band
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 10)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
E. Dubas ◽  
A. M. Castillo ◽  
I. Żur ◽  
M. Krzewska ◽  
M. P. Vallés

Abstract Background A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. Results In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. Conclusions Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.


2021 ◽  
Author(s):  
Alex Willems ◽  
Yuanke Liang ◽  
Jefri Heyman ◽  
Thomas Eekhout ◽  
Hilde Van den Daele ◽  
...  

ABSTRACTThe anaphase-promoting complex/cyclosome (APC/C) marks key cell cycle proteins for proteasomal breakdown, thereby ensuring unidirectional progression through the cell cycle. Its target recognition is temporally regulated by activating subunits, one of which is called CELL CYCLE SWITCH 52 A2 (CCS52A2). We sought to expand the knowledge of identified APC/C targets by using the severe growth phenotypes of CCS52A2-deficient Arabidopsis thaliana plants as a readout in a suppressor mutagenesis screen, resulting in the identification of the previously undescribed gene called PIKMIN1 (PKN1). PKN1 deficiency rescues the disorganized root stem cell phenotype of the ccs52a2-1 mutant, whereas an excess of PKN1 inhibits growth of ccs52a2-1 plants, indicating the importance of PKN1 abundance for proper development. Accordingly, the lack of PKN1 in a wild-type background negatively impacts cell division, while its ectopic expression promotes proliferation. PKN1 shows a cell cycle phase-dependent accumulation pattern, localizing to microtubular structures, including the preprophase band, the mitotic spindle, and phragmoplast. PKN1 is conserved throughout the plant kingdom, with its function in cell division being evolutionary conserved in the liverwort Marchantia polymorpha. Our data thus demonstrate that PKN1 represents a novel, plant-specific gene with a rate-limiting role in cell division, which is proteolytically controlled by the CCS52A2-activated APC/C.One-Sentence SummaryPKN1 is a conserved plant-specific protein that is rate-limiting for cell division, likely through its interaction with microtubuli, and is proteolytically controlled by APC/CCCS52A2.


2021 ◽  
Author(s):  
Alexis Lebecq ◽  
Aurelie Fangain ◽  
Alice Boussaroque ◽  
Marie-Cecile Caillaud

During the life cycle of any multicellular organism, cell division contributes to the proliferation of the cell in the tissues as well as the generation of specialized cells, both necessary to form a functional organism. Therefore, the mechanisms of cell division need to be tightly regulated, as malfunctions in their control can lead to tumor formation or developmental defects. This is particularly true in land plants, where cells cannot relocate and therefore cytokinesis is key for morphogenesis. In the green lineage, cell division is executed in radically different manners than animals, with the appearance of new structures (the preprophase band (PPB), cytokinetic the cell plate and phragmoplast), and the disappearance of ancestral mechanisms (cleavage, centrosomes). While F-actin and microtubules closely co-exist to allow the orientation and the progression of the plant cell division, recent studies mainly focused on the involvement of microtubules in this key process. Here, we used our recently developed root tracking system to follow actin dynamics in dividing Arabidopsis meristematic root cells. In this study, we imaged in time and space the fluorescent-tagged F-actin reporter Lifeact together with cell division markers in dividing cells embedded in their tissues. In addition to the F-actin accumulation in the phragmoplasts, we observed and quantified a dynamic apical-basal enrichment of the F-actin during cytokinesis. The role and the possible actors responsible for F-actin dynamics during cytokinesis are discussed.


Nature Plants ◽  
2021 ◽  
Author(s):  
Pratibha Kumari ◽  
Pradeep Dahiya ◽  
Pantelis Livanos ◽  
Luise Zergiebel ◽  
Malte Kölling ◽  
...  

2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Pablo Martinez ◽  
Ram Dixit ◽  
Rachappa S. Balkunde ◽  
Antonia Zhang ◽  
Seán E. O’Leary ◽  
...  

The microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell shape–based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. In telophase, colocalization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to microtubule organization to ensure proper division plane orientation.


2019 ◽  
Vol 21 (1) ◽  
pp. 81
Author(s):  
Eleni Giannoutsou ◽  
Basil Galatis ◽  
Panagiotis Apostolakos

The distribution of highly de-esterified homogalacturonans (HGs) in dividing protodermal cells of the monocotyledon Zea mays, the dicotyledon Vigna sinensis, and the fern Asplenium nidus was investigated in order to examine whether the cell wall region adjoining the preprophase band (PPB) is locally diversified. Application of immunofluorescence revealed that de-esterified HGs were accumulated selectively in the cell wall adjacent to the PPB in: (a) symmetrically dividing cells of stomatal rows of Z. mays, (b) the asymmetrically dividing protodermal cells of Z. mays, (c) the symmetrically dividing guard cell mother cells (GMCs) of Z. mays and V. sinensis, and (d) the symmetrically dividing protodermal cells of A. nidus. A common feature of the above cell types is that the cell division plane is defined by extrinsic cues. The presented data suggest that the PPB cortical zone-plasmalemma and the adjacent cell wall region function in a coordinated fashion in the determination/accomplishment of the cell division plane, behaving as a continuum. The de-esterified HGs, among other possible functions, might be involved in the perception and the transduction of the extrinsic cues determining cell division plane in the examined cells.


2019 ◽  
Author(s):  
Pablo Martinez ◽  
Ram Dixit ◽  
Rachappa S. Balkunde ◽  
Seán E. O’Leary ◽  
Kenneth A. Brakke ◽  
...  

AbstractThe microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell-shape-based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. Spindle defects in the tan1 mutant suggest that TAN1-mediated microtubule zippering may contribute to metaphase spindle organization. In telophase, co-localization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to spindle and phragmoplast microtubule organization to ensure proper division plane orientation.


2019 ◽  
Vol 70 (1) ◽  
pp. 239-267 ◽  
Author(s):  
Pantelis Livanos ◽  
Sabine Müller

Plant cells divide their cytoplasmic content by forming a new membrane compartment, the cell plate, via a rerouting of the secretory pathway toward the division plane aided by a dynamic cytoskeletal apparatus known as the phragmoplast. The phragmoplast expands centrifugally and directs the cell plate to the preselected division site at the plasma membrane to fuse with the parental wall. The division site is transiently decorated by the cytoskeletal preprophase band in preprophase and prophase, whereas a number of proteins discovered over the last decade reside continuously at the division site and provide a lasting spatial reference for phragmoplast guidance. Recent studies of membrane fusion at the cell plate have revealed the contribution of functionally conserved eukaryotic proteins to distinct stages of cell plate biogenesis and emphasize the coupling of cell plate formation with phragmoplast expansion. Together with novel findings concerning preprophase band function and the setup of the division site, cytokinesis and its spatial control remain an open-ended field with outstanding and challenging questions to resolve.


Sign in / Sign up

Export Citation Format

Share Document