scholarly journals A Comparative Analysis on Performance and Emission Characteristics of Four Stroke CI Engine with Diesel, Hazelnut and Corn Bio-Diesel Blends as Fuel

2016 ◽  
Vol 5 (6) ◽  
pp. 1611-1617
2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


2020 ◽  
Author(s):  
Anish Mariadhas ◽  
Jayaprabakar Jayaraman ◽  
Nivin Joy ◽  
P. Saikamal ◽  
P. V. S. Yaswanth ◽  
...  

2021 ◽  
Vol 850 (1) ◽  
pp. 012005
Author(s):  
Nikhil Muthu Kumar ◽  
Harsh Bhavsar ◽  
G Sakthivel ◽  
Mohammed Musthafa Feroskhan ◽  
K Karunamurthy

Abstract The introduction of the strict emissions norms is diverting the research for the development of new technologies which leads to the reduction of engine exhaust emissions. The usage of biodiesel in CI engine can enhance air quality index and protects the environment. Biodiesel can do an increment in the life of CI engines because it is clean-burning and a stable fuel when compared to diesel. Moreover, biogas has the potential to decrease both nitrogen oxides and smoke emissions simultaneously. Operating the engine in dual-fuel mode can provide lower emissions and a proper substitute for diesel. In this research, a modified CI Engine with single cylinder is used. Biogas is used as primary fuel and diesel, Mahua oil-diesel blend and Fish oil-diesel blend are used as secondary fuel. The effect of various secondary fuel blends on performance and emission characteristics in dual fuel engine are compared. In light of the performance and emission qualities it is reasoned that, utilization of the dual fuel mode in engine signifies the durability and lessens the harmful emissions from the engine with the exception of hydrocarbon and CO emissions. The excessive viscosity of fish oil and mahua oil prompts inconvenience in siphoning and spray attributes. The incompetent mixing of raw fish oil and raw mahua oil with diesel and biogas including air leads to incomplete combustion.


In recent trends due to the increase in rate of petrol and diesel prices biodiesel has been used as an alternate fuel in many of the fast developing countries. However in our country also many research work has been done using different oils. In this paper instead of using a single oil, two different oils was mixed with diesel in different blends and the emissions were calculated and the results were plotted. The two different oils used was the Cashew nutshell liquid (CNSL) and the Rice bran oil. Cashew oil is found to be a by-product which is available from the Cashew industry and after the transesterification process the cardanol obtained was used without any modifications. Rice bran oil is mostly found in the places where rice is grown in a huge quantity and more number of research works has not been done in this oil. By the transesterification process the rice bran oil was prepared and mixed with the CNSL in the different proportions, which was also mixed with diesel in some amounts and the different characteristics were evaluated and plotted.


Sign in / Sign up

Export Citation Format

Share Document