fuel additive
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 154)

H-INDEX

32
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 315 ◽  
pp. 123125
Author(s):  
Hong-Quan Do ◽  
Alessandro Faccinetto ◽  
Luc-Sy Tran ◽  
Pascale Desgroux ◽  
Laurent Gasnot ◽  
...  

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122839
Author(s):  
Xin Yi Lim ◽  
Peter Nai Yuh Yek ◽  
Rock Keey Liew ◽  
Meng Choung Chiong ◽  
Wan Adibah Wan Mahari ◽  
...  

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121918
Author(s):  
Mortaza Aghbashlo ◽  
Hajar Rastegari ◽  
Hassan S. Ghaziaskar ◽  
Homa Hosseinzadeh-Bandbafha ◽  
Mohammad Hossein Nadian ◽  
...  

2022 ◽  
pp. 100818
Author(s):  
K Shyam Prasad ◽  
S Z Mohamed Shamshuddin ◽  
S R Pratap

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1537
Author(s):  
Gayathri Arun ◽  
Muhammad Ayoub ◽  
Zulqarnain Zulqarnain ◽  
Umesh Deshannavar ◽  
Mohd Hizami Mohd Mohd Yusoff ◽  
...  

Biodiesel production has gained considerable importance over the last few decades due to the increase in fossil fuel prices as well as toxic emissions of oxygen and nitrogen. The production of biodiesel via catalytic transesterification produces crude glycerol as a co-product along with biodiesel, amounting to 10% of the total biodiesel produced. Glycerol has a low value in its impure form, and the purification of glycerol requires sophisticated technologies and is an expensive process. The conversion of crude glycerol into value-added chemicals such as solketal is the best way to improve the sustainability of biodiesel synthesis using the transesterification reaction. Therefore, the conversion of crude glycerol into the solketal was investigated in a batch reactor simulation model developed by the Aspen Plus V11.0. The non-random two liquid theory (NRTL) method was used as a thermodynamic property package to study the effect of four input ketalization parameters. The model was validated with the findings of previous experimental studies of solketal synthesis using sulfuric acid as a catalyst. The influence of the following operating parameters was investigated: reaction time of 10,000 to 60,000 s, reaction temperature of 303 to 323 K, acetone to glycerol molar ratio of 2:1 to 10:1, and catalyst concentration of 0.005 to 0.03 wt %. The optimum solketal yield of 81.36% was obtained at the optimized conditions of 313 K, 9:1, 0.03 wt %, and 40,000 s. The effect of each input parameter on the ketalization process and interaction between input and output parameters was investigated by using the response surface methodology (RSM) optimizer. The relationship between independent and response variables developed by RSM fit most of the simulation data, which showed the accuracy of the model. A second-order differential equation fit the simulation data well and showed an R2 value of 0.99. According to the findings of RSM, the influence of catalyst amount, acetone to glycerol molar ratio, and reaction time were more significant on solketal yield. The effect of temperature on the performance of the reaction was not found to be significant because of the exothermic nature of the process. The findings of this study showed that biodiesel-derived glycerol can be effectively utilized to produce solketal, which can be used for a wider range of applications such as a fuel additive. However, further work is required to enhance the solketal yield by developing new heterogeneous catalysts so that the industrial implementation of its production can be made possible.


The transportation sector holds a big share of the emission to the atmosphere. The emission of Green House Gas (GHG) leads to the thinning of the ozone layer. This situation leads to global warming. An international summit in Kyoto 1997 decided to stabilize the Green House Gas (GHG) emission. Therefore, many types of research have been conducted to reduce emissions. Improving engine performance is another method to reduce the amount of gasoline usage. One of the methods is to reduce emissions is by using alternative fuels. hydrogen, alcohol, and biofuel are among the examples. Among the alternatives, alcohol is a very popular alternative used in an internal combustion engine. This paper aims at reviewing the effect of alcohol on the performance and emission of the use of alcohol inside the spark-ignition engine. This review has confirmed that alcohol serves as good alternative fuel, especially if it is mixed at a good ratio with gasoline. With a good blend of alcohol-gasoline, emission can be reduced significantly


2021 ◽  
Author(s):  
Agata Jaroń ◽  
Anna Borucka ◽  
Grzegorz Sobecki

Abstract: Nanomaterials are a new group that has quickly found a wide range of applications in medicine, cosmetology, the food, weapons or automotive industry. They are also used as a fuel additive. This paper reviews the literature and assesses the current state of knowledge regarding the use of nanoparticles in automotive engine fuels. The results obtained so far are presented and further research directions in this field are identified Conclusion: The results of the review showed a discrepancy, selected groups favor the reduction of harmful gas emissions, while others do not and even increase emissions, e.g. the use of carbon nanotubes contributes to the increase in the emission of environmentally harmful nitrogen oxides, while the presence of graphene oxide reduces it. An interesting observation is also the fact that groups such as titanium and graphene oxide reduce the emission of harmful carbon monoxide by improving fuel combustion from semi-combustion to complete combustion, but at the same time increase CO2 emissions, which in turn is a greenhouse gas The whole group of nanomaterials contributes to the reduction of hydrocarbon emissions Nanomaterials improve the quality of fuel combustion The review shows tests only on diesel and a mixture with biodiesel in the review there were no studies for gasoline


Author(s):  
Jimmy Nelson Appaturi ◽  
Manickam Selvaraj ◽  
Rajabathar Jothi Ramalingam ◽  
Fitri Khoerunnisa ◽  
Severinne Rigolet ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dayong Yu ◽  
Xiaofang Liu ◽  
Jingjing Jiang ◽  
Yixuan Liu ◽  
Jinyu Tan ◽  
...  

A new generation of bioplatform molecule 5-ethoxymethylfurfural (EMF) has excellent energy density and combustion performance, which makes it a potential fuel additive. This article reviews the factors that affect the production of EMF from different feedstocks, including platform compounds, monosaccharides, polysaccharides, and raw lignocellulosic biomass. Focus is placed on discussing the catalytic efficiency with pros and cons of different acid catalysts, including homogeneous catalysts (i.e., liquid acids and metal salts), heterogeneous catalysts (i.e., zeolites, heteropolyacid-based hybrids, and SO3H-based catalysts), ionic liquids, mixed acid catalysts, and deep eutectic solvents (DESs). Except for the commonly used ethanol solvent, this review also summarizes the influence of the cosolvent system (e.g., ethanol/dimethylsulfoxide (DMSO), ethanol/tetrahydrofuran (THF), and ethanol/γ-valerolactone (GVL)) on the EMF yield.


Sign in / Sign up

Export Citation Format

Share Document