scholarly journals FEASIBILITY STUDY ON EFFECT OF STRUCTURAL FLEXIBILITY OF ASYMMETRIC PRE-SWIRL STATOR ON PROPULSION PERFORMANCE FOR KRISO CONTAINER SHIP (KCS)

Brodogradnja ◽  
2021 ◽  
Vol 72 (4) ◽  
pp. 103-119
Author(s):  
Jin Gu Kang ◽  
Moon Chan Kim ◽  
I Rok Shin ◽  
Woo Seok Jin

The use of energy-saving devices is the most effective method for decreasing CO2 emissions, which is an increasingly concerning environmental issue. The asymmetric pre-swirl stator has been developed as an energy-saving device and has been successfully applied to various types of vessels. In the present study, a flexible material was applied to an asymmetric pre-swirl stator to determine the variation in the flow around stator and its efficiency. A fluid–structure interaction (FSI) analysis system was developed using the Star-CCM+ (fluid) and the Abaqus (structure). The proposed analysis system was validated by comparing the experimental results using a flexible plate in a flowing fluid. The flexible stator was applied to a 3,600 TEU KRISO Container Ship to determine the improvement in its performance compared to the previous optimum value achieved with a rigid stator. Although this application was conducted on a model scale and the deformation was small, the results of the flexible stator indicated the possibility of not only increasing the efficiency but also decreasing the vortex risk around stator blade.

2015 ◽  
Author(s):  
Charinda L. Perera ◽  
Ema Muk-Pavic

This research paper describes the CFD work carried out by the authors to investigate the potential energy savings achieved by attaching a Vortex Generator to the hull of a container ship. This is done by computing the flow pattern at the propeller plane before and after the addition of a Vortex Generator, to determine if the addition of the mentioned device presents the propeller with a more favourable inflow. The Vortex Generator is a trapezoidal shape fin attached to the hull which works by inducing vorticity and deflecting streamlines within the boundary layer, thus diverting and equalizing wake flow into the propeller.


2020 ◽  
Vol 12 ◽  
pp. 175682931990088
Author(s):  
Shanyong Zhao ◽  
Zhen Liu ◽  
Penglei Che ◽  
Bingfei Li ◽  
Tianjiao Dang ◽  
...  

Author(s):  
Yuan-Qing Xu ◽  
Yan-Qun Jiang ◽  
Jie Wu ◽  
Yi Sui ◽  
Fang-Bao Tian

Body-fitted and Cartesian grid methods are two typical types of numerical approaches used for modelling fluid–structure interaction problems. Despite their extensive applications, there is a lack of comparing the performance of these two types of approaches. In order to do this, the present paper presents benchmark numerical solutions for two two-dimensional fluid–structure interaction problems: flow-induced vibration of a highly flexible plate in an axial flow and a pitching flexible plate. The solutions are obtained by using two partitioned fluid–structure interaction methods including the deforming-spatial-domain/stabilized space–time fluid–structure interaction solver and the immersed boundary–lattice Boltzmann method. The deforming-spatial-domain/stabilized space–time fluid–structure interaction solver employs the body-fitted-grid deforming-spatial-domain/stabilized space–time method for the fluid motions and the finite-difference method for the structure vibrations. A new mesh update strategy is developed to prevent severe mesh distortion in cases where the boundary does not oscillate periodically or needs a long time to establish a periodic motion. The immersed boundary–lattice Boltzmann method uses lattice Boltzmann method as fluid solver and the same finite-difference method as structure solver. In addition, immersed boundary method is used in the immersed boundary–lattice Boltzmann solver to handle the fluid–structure interaction coupling. Results for the characteristic force coefficients, tail position, plate deformation pattern and the vorticity fields are presented and discussed. The present results will be useful for evaluating the performance and accuracy of existing and new numerical methodologies for fluid–structure interaction.


Author(s):  
T. Liaghat ◽  
F. Guibault ◽  
L. Allenbach ◽  
B. Nennemann

Fluid-structure interaction (FSI) and unavoidable vibrations are important characteristics in the operation of hydropower structures and must be taken into account in the analysis and design of such equipment. Hydrodynamic damping influences the amplitude of vibrations and is directly related to fatigue problems in hydraulic machines which are of great importance. The aim of this study is to investigate the coupled effects of flowing fluid on a simplified hydrofoil by using three-dimensional two-way fluid-structure interaction modeling, in order to determine its importance in predicting vibration amplitudes and damping. The effect of considering different flow velocities is also investigated in the present study. The results of this research are compared with those obtained from experiments done by ANDRITZ [1]. The influences of mesh size and time step are also studied. Our results indicate that considering FSI in predicting the frequencies of the fluctuating fluid forces in practical problems might be ignored if the main concern of the analysis is to check the possibility of resonance. However, FSI must be included in the modeling when we aim to predict the influence of the fluid on the damping behavior in the hydrofoil vibration.


Author(s):  
Marie Pomarede ◽  
Aziz Hamdouni ◽  
Erwan Liberge ◽  
Elisabeth Longatte ◽  
Jean-Franc¸ois Sigrist

Tube bundles in steam boilers of nuclear power plants and nuclear on-board stokehold are known to be exposed to high levels of vibrations under flowing fluid. This coupled fluid-structure problem is still a challenge for engineers, first because of the difficulty to fully understand it, second because of the complexity for setting it up numerically. Although numerical techniques could help the understanding of such a mechanism, a complete simulation of a fluid past a whole elastically mounted tube bundle is currently out of reach for engineering purposes. To get round this problem, the use of a reduced-order model has been proposed with the introduction of the widely used Proper Orthogonal Decomposition (POD) method for a flow past a fixed structure [M. Pomare`de, E. Liberge, A. Hamdouni, E.Longatte, & J.F. Sigrist - Simulation of a fluid flow using a reduced-order modelling by POD approach applied to academic cases; PVP2010, July 18–22, Seattle]. Interesting results have been obtained for the reconstruction of the flow. Here a first step is to propose to consider the case of a flow past a fixed tube bundle configuration in order to check the good reconstruction of the flow. Then, an original approach proposed by Liberge (E. Liberge; POD-Galerking Reduction Models for Fluid-Structure Interaction Problems, PhD Thesis, Universite´ de La Rochelle, 2008) is applied to take into account the fluid-structure interaction characteristic; the so-called “multiphase” approach. This technique allows applying the POD method to a configuration of a flow past an elastically mounted structure. First results on a single circular cylinder and on a tube bundle configuration are encouraging and let us hope that parametric studies or prediction calculations could be set up with such an approach in a future work.


Author(s):  
Richard M. Howell ◽  
Anthony D. Lucey ◽  
Peter W. Carpenter

A novel method for calculating the linear fluid-structure interaction of a cantilevered flexible plate centrally positioned in ideal channel flow, incorporating the effects of vorticity shed downstream, is described. When the channel walls are moved far apart, predictions of the critical velocity show good correlation with other published work. For the first time, detailed numerical investigation of the effect on this fluid-structure interaction of channel walls, a rigid central surface (upstream and adjacent to the flexible plate), unsteady mean flow and the variation of stiffness and damping properties along the flexible plate have been quantified. Of central importance is the application of the unsteady model to the investigation of the human snoring phenomenon. Further insight into the operation of two types of snore is made and a new type of snore is discovered that originates from the time-dependent effects of inhalation.


Sign in / Sign up

Export Citation Format

Share Document