scholarly journals MODELLING THE MIGRATION OF ANTHROPOGENIC POLLUTION FROM ACTIVE MUNICIPAL LANDFILL IN GROUNDWATERS

2021 ◽  
Vol 14 (2) ◽  
pp. 81-90
Author(s):  
Józef CIUŁA
2008 ◽  
Vol 10 (3) ◽  
pp. 240-253
Author(s):  
Y. Kamenir ◽  
T. I. Mikhailyuk ◽  
A. F. Popova ◽  
R. B. Kemp ◽  
Z. Dubinsky

2015 ◽  
Vol 176 (2) ◽  
pp. 163-176
Author(s):  
S. G. Veliksar ◽  
◽  
S. S. Lisnik ◽  
D. N. Bratco ◽  
S. I. Toma ◽  
...  

Author(s):  
Andrei Bagaev ◽  
Andrei Bagaev ◽  
Irina Chubarenko ◽  
Irina Chubarenko

An overview of modern approaches to the problem of parametrisation of sources of marine waters microplastics pollution from the coastline is conducted. The estimates of Europe’s plastic production along with mismanaged plastic waste percentage that might be the source of microplastics particles input to marine environment are presented. A semi-empirical for-mulation for the particles source intensity is suggested. It considers the main factors of local anthropogenic pressure for the coastal spot location for the given coordinates. Both ad-vantages and disadvantages of such an approach along with possible ways for improvement are discussed.


Author(s):  
Lilia Khatmullina ◽  
Lilia Khatmullina ◽  
Elena Esiukova ◽  
Elena Esiukova

The sediment sampling from different areas of the beaches in the south-eastern part of the Baltic Sea (in Kaliningrad region) was executed for the purpose of studying the quantitative and qualitative composition of the microplastics particles (range 0.5-5 mm). Preference is given to those beaches that are exposed to maximum anthropogenic pollution. From June, 2015 to January, 2016, there were 14 expeditions along the coastline of the Baltic Sea (in Kaliningrad region) to collect experimental materials. The majority of samples were collected on the most recent flotsam deposited at “wracklines”, in the supralittoral zone. The primary examination of those samples revealed the presence of abundant microplastic particles of the required size range (0.5-5 mm). Quantitative distribution of microplastics in beach sediments was obtained in milligrams per gram of sediment and milligrams per m2: on average 0.05-2.89 (mg per gram of sediment) and 370-7330 (mg per m2), accordingly.


Author(s):  
Andrei Bagaev ◽  
Andrei Bagaev ◽  
Irina Chubarenko ◽  
Irina Chubarenko

An overview of modern approaches to the problem of parametrisation of sources of marine waters microplastics pollution from the coastline is conducted. The estimates of Europe’s plastic production along with mismanaged plastic waste percentage that might be the source of microplastics particles input to marine environment are presented. A semi-empirical for-mulation for the particles source intensity is suggested. It considers the main factors of local anthropogenic pressure for the coastal spot location for the given coordinates. Both ad-vantages and disadvantages of such an approach along with possible ways for improvement are discussed.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2144
Author(s):  
Syed Hassan Iqbal Ahmad Shah ◽  
Jianguo Yan ◽  
Israr Ullah ◽  
Bilal Aslam ◽  
Aqil Tariq ◽  
...  

Vulnerability analysis in areas vulnerable to anthropogenic pollution has become a key element of sensible resource management and land use planning. This study is intended to estimate aquifer vulnerability using the DRASTIC model and using the vertical electrical sounding (VES) and electrical conductivity (EC) outcomes. The model allows for the identification of hydrogeological environments within the scope of the research, based on a composite definition of each environment’s main geological, geoelectrical, and hydrogeological factors. The results from the DRASTIC model were divided into four equal intervals, high, medium, low, and very low drastic index values. The SW area and NE area depict drastic index values from medium to very high, making it the most vulnerable zone in the study area, while the NW and SW areas show low to very low drastic index values. In addition, the results from the VES and EC the freshwater aquifer in the NE area and brackish water in the SE area, while the rest of the area falls into the category of brackish water. Overall, it can be concluded that areas having freshwater assemblages are on the verge of becoming contaminated in the future while the rest of the NW and SW areas constitute less vulnerable zones. The validation conducted for DRASTIC and EC shows a nearly positive correlation. Wastewater treatment policies must be developed throughout the studied region to prevent contamination of the remaining groundwater.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 121
Author(s):  
Giovanni Vespasiano ◽  
Francesco Muto ◽  
Carmine Apollaro

Hydrogeochemical characterization and statistical methods were used to investigate the groundwater quality and the origin of constituents (anthropic or natural) in groundwater of the Coreca area (Calabria, South Italy). Coreca is characterized by an articulated geological setting where the three main geological complexes that distinguish the Northern Calabria Peloritan Orogen (CPO) outcrop. This complex asset affects the quality of groundwater mainly exploited for irrigation use. In particular, the presence of ultramafic rocks (e.g., serpentinite and metabasite) promotes the release of harmful elements such as Cr and Ni. In the studied area, two groups of waters were identified: Ca-HCO3 waters strongly controlled by the interaction with Ca-rich phases (e.g., limestone), and Mg-HCO3 waters related to the interaction of meteoric water with the metamorphic units. Statistical elaboration allowed to detect, in the Mg-HCO3 group, a good correlation between Cr and Ni (not observed in Ca waters) and a negative correlation between Cr, Ca and Al, in agreement with direct interaction with ultramafic rocks characterized by low concentrations of CaO and Al2O3. The concentration of major and trace elements has been compared with the Italian law limit values and the drinking water guidelines provided by the World Health Organization (WHO). Only three samples showed Mn and Ni concentration higher than the Italian law threshold. Furthermore, the assessment of groundwater quality was carried out using salinity and metal indexes. The groundwater quality assessment for irrigation allowed to classify the resource as “excellent to good” and “good to permissible”; nevertheless, a salinity problem and a magnesium hazard were found. Lastly, a metal index (MI) calculation revealed values <1 for almost all samples, pointing to good overall quality. Only a few samples showed a value extremely higher than 1, attributable to prolonged interaction with ultramafic rocks and/or localized anthropogenic pollution. From a general point of view, groundwater showed a generally good quality except for limited areas (and limited to the set of constituents analyzed) and a mild exceedance of the maximum salinity thresholds that must be monitored over time. Through a multidisciplinary approach, it was possible to ascertain the main anomalies attributable to the interaction with the hosting rocks and not (with few exceptions) to anthropic processes.


Sign in / Sign up

Export Citation Format

Share Document