In-Season Nitrogen Status Assessment and Yield Estimation Using Hyperspectral Vegetation Indices in a Potato Crop

2015 ◽  
Vol 107 (4) ◽  
pp. 1295-1309 ◽  
Author(s):  
T. Morier ◽  
A. N. Cambouris ◽  
K. Chokmani
Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 223
Author(s):  
Rubaiya Binte Mostafiz ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Satellite remote sensing technologies have a high potential in applications for evaluating land conditions and can facilitate optimized planning for agricultural sectors. However, misinformed land selection decisions limit crop yields and increase production-related costs to farmers. Therefore, the purpose of this research was to develop a land suitability assessment system using satellite remote sensing-derived soil-vegetation indicators. A multicriteria decision analysis was conducted by integrating weighted linear combinations and fuzzy multicriteria analyses in a GIS platform for suitability assessment using the following eight criteria: elevation, slope, and LST vegetation indices (SAVI, ARVI, SARVI, MSAVI, and OSAVI). The relative priorities of the indicators were identified using a fuzzy expert system. Furthermore, the results of the land suitability assessment were evaluated by ground truthed yield data. In addition, a yield estimation method was developed using indices representing influential factors. The analysis utilizing equal weights showed that 43% of the land (1832 km2) was highly suitable, 41% of the land (1747 km2) was moderately suitable, and 10% of the land (426 km2) was marginally suitable for improved yield productions. Alternatively, expert knowledge was also considered, along with references, when using the fuzzy membership function; as a result, 48% of the land (2045 km2) was identified as being highly suitable; 39% of the land (2045 km2) was identified as being moderately suitable, and 7% of the land (298 km2) was identified as being marginally suitable. Additionally, 6% (256 km2) of the land was described as not suitable by both methods. Moreover, the yield estimation using SAVI (R2 = 77.3%), ARVI (R2 = 68.9%), SARVI (R2 = 71.1%), MSAVI (R2 = 74.5%) and OSAVI (R2 = 81.2%) showed a good predictive ability. Furthermore, the combined model using these five indices reported the highest accuracy (R2 = 0.839); this model was then applied to develop yield prediction maps for the corresponding years (2017–2020). This research suggests that satellite remote sensing methods in GIS platforms are an effective and convenient way for agricultural land-use planners and land policy makers to select suitable cultivable land areas with potential for increased agricultural production.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2439
Author(s):  
Haixiao Ge ◽  
Fei Ma ◽  
Zhenwang Li ◽  
Changwen Du

The accurate estimation of grain yield in rice breeding is crucial for breeders to screen and select qualified cultivars. In this study, a low-cost unmanned aerial vehicle (UAV) platform mounted with an RGB camera was carried out to capture high-spatial resolution images of rice canopy in rice breeding. The random forest (RF) regression techniques were used to establish yield models by using (1) only color vegetation indices (VIs), (2) only phenological data, and (3) fusion of VIs and phenological data as inputs, respectively. Then, the performances of RF models were compared with the manual observation and CERES-Rice model. The results indicated that the RF model using VIs only performed poorly for estimating yield; the optimized RF model that combined the use of phenological data and color VIs performed much better, which demonstrated that the phenological data significantly improved the model performance. Furthermore, the yield estimation accuracy of 21 rice cultivars that were continuously planted over three years in the optimal RF model had no significant difference (p > 0.05) with that of the CERES-Rice model. These findings demonstrate that the RF model, by combining phenological data and color Vis, is a potential and cost-effective way to estimate yield in rice breeding.


Author(s):  
A. Crema ◽  
G. Vandini ◽  
M. Boschetti ◽  
F. Nutini ◽  
D. Cillis ◽  
...  

2014 ◽  
Vol 157 ◽  
pp. 111-123 ◽  
Author(s):  
Fei Li ◽  
Yuxin Miao ◽  
Guohui Feng ◽  
Fei Yuan ◽  
Shanchao Yue ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 54 ◽  
Author(s):  
Mohamad Awad

Many crop yield estimation techniques are being used, however the most effective one is based on using geospatial data and technologies such as remote sensing. However, the remote sensing data which are needed to estimate crop yield are insufficient most of the time due to many problems such as climate conditions (% of clouds), and low temporal resolution. There have been many attempts to solve the lack of data problem using very high temporal and very low spatial resolution images such as Modis. Although this type of image can compensate for the lack of data due to climate problems, they are only suitable for very large homogeneous crop fields. To compensate for the lack of high spatial resolution remote sensing images due to climate conditions, a new optimization model was created. Crop yield estimation is improved and its precision is increased based on the new model that includes the use of the energy balance equation. To verify the results of the crop yield estimation based on the new model, information from local farmers about their potato crop yields for the same year were collected. The comparison between the estimated crop yields and the actual production in different fields proves the efficiency of the new optimization model.


Sign in / Sign up

Export Citation Format

Share Document