Physical Soil Amendments, Soil Compaction, Irrigation, and Wetting Agents in Turfgrass Management I. Effects on Compactability, Water Infiltration Rates, Evapotranspiration, and Number of Irrigations 1

1966 ◽  
Vol 58 (5) ◽  
pp. 525-528 ◽  
Author(s):  
W. C. Morgan ◽  
J. Letey ◽  
S. J. Richards ◽  
N. Valoras
1955 ◽  
Vol 47 (5) ◽  
pp. 235-236 ◽  
Author(s):  
O. K. Barnes ◽  
D. W. Bohmont ◽  
Frank Rauzi

Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


2006 ◽  
Vol 21 (1) ◽  
pp. 15-25 ◽  
Author(s):  
J.L. Pikul ◽  
R.C. Schwartz ◽  
J.G. Benjamin ◽  
R.L. Baumhardt ◽  
S. Merrill

AbstractAgricultural systems produce both detrimental and beneficial effects on soil quality (SQ). We compared soil physical properties of long-term conventional (CON) and alternative (ALT) cropping systems near Akron, Colorado (CO); Brookings, South Dakota (SD); Bushland, Texas (TX); Fargo, North Dakota (ND); Mandan (ND); Mead, Nebraska (NE); Sidney, Montana (MT); and Swift Current, Saskatchewan (SK), Canada. Objectives were to quantify the changes in soil physical attributes in cropping systems and assess the potential of individual soil attributes as sensitive indicators of change in SQ. Soil samples were collected three times per year from each treatment at each site for one rotation cycle (4 years at Brookings and Mead). Water infiltration rates were measured. Soil bulk density (BD) and gravimetric water were measured at 0–7.5, 7.5–15, and 15–30 cm depth increments and water-filled pore space ratio (WFPS) was calculated. At six locations, a rotary sieve was used to separate soil (top 5 cm) into six aggregate size groups and calculate mean weight diameter (MWD) of dry aggregates. Under the CON system at Brookings, dry aggregates (>19 mm) abraded into the smallest size class (<0.4 mm) on sieving. In contrast, the large aggregates from the ALT system abraded into size classes between 2 and 6 mm. Dry aggregate size distribution (DASD) shows promise as an indicator of SQ related to susceptibility of soil to wind erosion. Aggregates from CON were least stable in water. Soil C was greater under ALT than CON for both Brookings and Mead. At other locations, MWD of aggregates under continuous crop or no tillage (ALT systems) was greater than MWD under CON. There was no crop system effect on water infiltration rates for locations having the same tillage within cropping system. Tillage resulted in increased, decreased, or unchanged near-surface BD. Because there was significant temporal variation in water infiltration, MWD, and BD, conclusions based on a single point-in-time observation should be avoided. Elevated WFPS at Fargo, Brookings, and Mead may have resulted in anaerobic soil conditions during a portion of the year. Repeated measurements of WFPS or DASD revealed important temporal characteristics of SQ that could be used to judge soil condition as affected by management.


Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 133 ◽  
Author(s):  
Dinushika Wanniarachchi ◽  
Mumtaz Cheema ◽  
Raymond Thomas ◽  
Vanessa Kavanagh ◽  
Lakshman Galagedara

Hydraulic properties of soil are the basis for understanding the flow and transport through the vadose zone. It has been demonstrated that different soil amendments can alter the soil properties affecting soil hydrology. The aim of this study was to determine the effect of soil amendments on hydraulic conductivity (K) of a loamy sand podzolic soil under both unsaturated (Kunsat) and near-saturated (near Ksat) conditions in an agricultural setting. A field experiment was conducted with two common soil amendments: Dairy manure (DM) in 2016 and 2017 and biochar (BC) once only in 2016. DM and BC were incorporated up to a depth of 0.15–0.20 m at a rate of 30,000 L ha−1 and 20 Mg ha−1, respectively. A randomized complete block experimental design was used and the plots planted with silage corn (Zea mays L.) without irrigation. The treatments were: Control without amendment (0N), inorganic N fertilizer (IN), two types of DM (IN+DM1 and IN+DM2), and two treatments with BC (IN+BC and IN+DM1+BC). Infiltration data were collected using a mini disk infiltrometer under three tension levels in which −0.04 and −0.02 m was ascribed as unsaturated (at the wet end) and −0.001 m as near-saturated condition. Based on the measured infiltration rates, Kunsat and near Ksat hydraulic conductivities were calculated. There were no significant effects of DM and BC on bulk density and near Ksat. Treatments IN+DM1, IN+DM2, and IN+DM1+BC significantly reduced the Kunsat compared to the control. Since these soil amendments can influence soil hydrology such as reduced infiltration and increased surface runoff, carefully monitored application of soil amendments is recommended.


2012 ◽  
Vol 16 (9) ◽  
pp. 3293-3307 ◽  
Author(s):  
M. J. Rossi ◽  
J. O. Ares

Abstract. Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina) were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers) are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1) overland flow and infiltration parameters were obtained in undisturbed field conditions; (2) field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3) the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying biogeography analysis of similarity of the environment where this study was performed with other desert areas of the world.


2003 ◽  
Vol 11 (5) ◽  
pp. 38-41
Author(s):  
Gordon Vrdoljak

Soil structure influences water supply to plant roots, aeration, water infiltration rates, suitability of soil medium for seed germination and growth, growth of plant roots, drainage, evaporation, mechanical strength, and workability (Dexter 1988). Adequate description of soil structure for cultivation, engineering, or remediation is typically done by light microscopy and transmission electron microscopy. Literature exists in numerous sources for preparation of soils for microscopy, but often preparation steps are left out due to the shortening of Methods Sections in journal articles to conserve print space. I present here, protocols I've used for preparation of tropical soils (Oxisols) for microscopy.


Sign in / Sign up

Export Citation Format

Share Document