Physical Soil Amendments, Soil Compaction, Irrigation, and Wetting Agents in Turfgrass Management II. Effects on Top Growth, Salinity, and Minerals in the Tissue 1

1966 ◽  
Vol 58 (5) ◽  
pp. 528-531 ◽  
Author(s):  
N. Valoras ◽  
W. C. Morgan ◽  
J. Letey
Author(s):  
Seidu Iddrisu Bawa ◽  
Charles Quansah ◽  
Henry Oppong Tuffour ◽  
Awudu Abubakari ◽  
Caleb Melenya

Two factorial pot experiments arranged in a Completely Randomised Design (CRD) with three replications were carried out to assess the impact of different levels of soil compaction and fertilizer amendments on root growth and biomass yield of maize (Zea mays L.) and soybean (Glycine max L.) plants. The treatments were different rates of bulk densities – 1.3, 1.5 and 1.7 Mg m-3 and fertilizer amendments comprising 100% poultry manure (applied at 15 g/plant), 100% 15:15:15 NPK fertilizer (applied at 2.89 g/plant) and 50% rate each of poultry manure and NPK fertilizer (applied at 7.5 g poultry manure + 1.45 g NPK/plant), and control (no fertilizer amendments). Soil compaction reduced the heights of maize and soybean plants. Increasing soil compaction resulted in the accumulation of most of the root biomass in the uncompacted soil above the compacted layer. Application of soil amendments increased the relative root biomass of maize plants in the uncompacted soil, while that in the compacted soil was reduced. In the case of soybean plants, although the relative root biomass in the uncompacted soil was relatively greater than that of maize plants, application of soil amendments tended to slightly decrease the relative root biomass to that of the control. The shoot biomass of both crops decreased with increasing soil bulk density. All the applied soil amendments significantly increased the shoot biomass of maize and soybean plants over the control. The magnitude of response of the crops to the soil amendments was greater in soybean than in maize plants. Soil compaction and amendments significantly influenced root/shoot ratio of both crops. The root/shoot ratio decreased with increasing compaction from 1.3 to 1.5 Mg m-3, however, at 1.7 Mg m-3, the root/shoot ratio increased. The fertilizer amendments significantly influenced the root/shoot ratio of maize but not soybean plants. The fertilizer amendments increased the biomass of both roots and shoots, being higher in the former than in the latter. The fertilizer amendments x compaction interactions showed that the root/shoot ratio was influenced by the type of crop, and the confounding effects of factor interactions on the relative increases/decreases in shoot and root growth. Overall, soil compaction accounted for 52 to 100% of the variations in the magnitude of the measured parameters of maize plants, and 62 to 98% for soybean plants. The ideal bulk density for shoot biomass production of both crops should, therefore, be within the range of 1.3 – 1.5 Mg m-3. At soil bulk density of 1.5 Mg m-3 and above, soil amendment should be added to ameliorate the negative impact of soil compaction.


2004 ◽  
Vol 14 (2) ◽  
pp. 212-217 ◽  
Author(s):  
R. Crofton Sloan ◽  
Richard L. Harkess ◽  
William L. Kingery

Urban soils are often not ideal planting sites due to removal of native topsoil or the mixing of topsoil and subsoil at the site. Adding pine bark based soil amendments to a clay soil altered soil bulk density and soil compaction which resulted in improved plant growth. Addition of nitrogen (N) or cotton gin waste to pine bark resulted in improved plant growth compared to pine bark alone. Growth of pansies (Viola × wittrockiana) during the 1999-2000 winter growing season was enhanced by the addition of pine bark plus nitrogen at 3- and 6-inch (7.6- and 15.2-cm) application rates (PBN3 and PBN6) and pine bark plus cotton gin waste at the 6 inch rate (CGW6). Plant size and flower production of vinca (Catharanthus roseus) were reduced by pine bark amendments applied at 3- or 6-inch rates (PB3 or PB6). Crapemyrtle (Lagerstroemia indica) grown in plots amended with 3 or 6 inches of pine bark plus cotton gin waste (CGW3 or CGW6) and pine bark plus nitrogen at 3- or 6-inch rates (PBN3 or PBN6) produced greater shoot growth than other amendment treatments. In some instances PB3 treatments suppressed growth. High levels of N and soluble salts derived from CGW and PBN soil amendments incorporated into the soil probably contributed to the improved plant growth observed in this experiment.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Author(s):  
Salavat Mudarisov ◽  
Ildar Farkhutdinov ◽  
Airat Mukhametdinov ◽  
Raushan Aminov ◽  
Rustam Bagautdinov ◽  
...  

1996 ◽  
Author(s):  
Michael P. Amaranthus ◽  
Debbie Page-Dumroese ◽  
Al Harvey ◽  
Efren Cazares ◽  
Larry F. Bednar

2019 ◽  
Vol 45 (5) ◽  
pp. 755
Author(s):  
Wen-Qing SHI ◽  
Bin-Bin ZHANG ◽  
Hong-Juan LIU ◽  
Qing-Xin ZHAO ◽  
Chun-Yu SHI ◽  
...  

2013 ◽  
Vol 21 (7) ◽  
pp. 810-816
Author(s):  
Wen-Jun DONG ◽  
Pei-Zhi XU ◽  
Ren-Zhi ZHANG ◽  
Xu HUANG ◽  
Hua-Ping ZHENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document