Winter Rye Cover Crop Management Influences on Soil Water, Soil Nitrate, and Corn Development

2011 ◽  
Vol 103 (2) ◽  
pp. 316-323 ◽  
Author(s):  
Erik S. Krueger ◽  
Tyson E. Ochsner ◽  
Paul M. Porter ◽  
John M. Baker
1990 ◽  
Vol 82 (4) ◽  
pp. 773-777 ◽  
Author(s):  
A. Munawar ◽  
R. L. Blevins ◽  
W. W. Frye ◽  
M. R. Saul

2010 ◽  
Vol 9 (1) ◽  
pp. 53 ◽  
Author(s):  
Zhiming Qi ◽  
Matthew J. Helmers

2016 ◽  
Vol 172 ◽  
pp. 40-50 ◽  
Author(s):  
Andrea D. Basche ◽  
Thomas C. Kaspar ◽  
Sotirios V. Archontoulis ◽  
Dan B. Jaynes ◽  
Thomas J. Sauer ◽  
...  
Keyword(s):  

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 863F-863
Author(s):  
Francis X. Mangan ◽  
John Howell ◽  
Stephen Herbert

Hot cherry peppers were grown after incorporation of the following three winter cover crop regimes in Summer 1994—hairy vetch (Vicia villosa) plus winter rye (Secale cereale), hairy vetch alone, and no cover crop. For each main effect there were three N rates applied to peppers in three applications over the course of the season: 0, 85, and 170 kg·ha–1. The pepper yield was significantly higher with hairy vetch plus rye than rye alone or no cover crop. There was also no significant yield increase with the addition of N fertilizer to the peppers grown with hairy vetch. Soil nitrate–N levels taken just prior to N sidedress were significantly higher in plots that had hairy vetch plus rye compared to other treatments. There was also a significant linear relationship of the soil nitrate–N levels among the three N rates. Based on the results of this study, sidedressing peppers would be recommended when soil nitrate levels are above the 25 ppm that is the current threshold for other crops. SPAD readings were taken several times during the season. There was a high correlation of SPAD readings to pepper yield very early and very late in the season. The correlation of SPAD readings to pepper yield was poorest when taken at the time of N sidedress.


HortScience ◽  
2005 ◽  
Vol 40 (6) ◽  
pp. 1716-1722 ◽  
Author(s):  
Steven Vanek ◽  
H.C. Wien ◽  
Anu Rangarajan

Growing a main vegetable crop for harvest and a cover crop for residue return to soil in the same growing season is a promising strategy to sustain soil quality in vegetable rotations. Our research evaluated cover crop strips interseeded between pumpkins (Cucurbita pepo L.) as a way to implement such a strategy. Cover crop types were lana vetch (Vicia villosa ssp. dasycarpa Ten.) and a lana vetch–winter rye (Secale cereale L.) mix, interseeded before, at the same time, or after pumpkins. The competitive impact of different cover crop strips was assessed using pumpkin yield, cover strip biomass, crop nitrogen status, soil nitrate status, and soil water potential. Cover strips were also assessed for competitiveness with native weeds. Seeding date affected the competitiveness of cover strips with pumpkins, while cover type did not. Cover crops seeded before pumpkins or at the same time reduced pumpkin yield in proportion to biomass produced by the cover strips early in pumpkin growth. Cover strips seeded after pumpkins did not reduce yield. Tilling in a before-seeded cover strip at 30 days after pumpkin seeding gave higher pumpkin yield than before-seeded cover strips that were not tilled. At three of four sites, after-seeded cover strips had the lowest percent weed biomass in strips, and at two sites with moderate weed pressure vetch–rye strips were more effective than vetch alone in suppressing weeds. Cover strips seeded before or at the same time as pumpkins reduced pumpkin yield by taking up resources that were otherwise available to pumpkins. At a high-rainfall site, competition for soil nitrate by cover crop strips was the dominant factor in reducing pumpkin yield. At a low-rainfall site, the dominant factor was competition for water. Because of effective weed suppression and lack of pumpkin yield reduction, interseeding vetch–rye strips after pumpkins was a promising practice, as was tilling in preexistent cover strips at an interval <30 days after pumpkin seeding. Good previous weed management and rye–vetch mixes at high seeding rates are necessary to allow interseeded cover strips to outcompete weeds.


Weed Science ◽  
2014 ◽  
Vol 62 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Emily R. Bernstein ◽  
David E. Stoltenberg ◽  
Joshua L. Posner ◽  
Janet L. Hedtcke

Grower adoption of no-tillage (NT) approaches to organic soybean production has been limited, in part because of the perceived risks of ineffective cover crop management and lack of season-long weed suppression. We conducted research in 2008 and 2009 to assess those risks by quantifying the effects of winter rye cover-crop management (tilling, crimping, or mowing), soybean planting date (mid May or early June), and row width (19 or 76 cm) on weed recruitment, emergence patterns, season-long suppression, and late-season weed community composition in transitional organic production systems. The weed plant community consisted largely of summer annual species in each year, with velvetleaf or common lambsquarters as the most abundant species. Seedling recruitment from the soil seedbank varied between years, but velvetleaf recruitment was consistently greater in the tilled rye than in the NT rye treatments. Weed emergence tended to peak early in the season in the tilled rye treatment, but in the NT rye treatments, the peak occurred in mid or late season. More-diverse summer annual and perennial species were associated with the NT rye treatments. Even so, weed suppression (as measured by late-season weed shoot mass) was much greater in crimped or mowed rye NT treatments than it was in the tilled treatment. Weed suppression among NT rye treatments was greater in 19- than in 76-row spacing treatments in each year and was greater for mid May than it was for early June planted soybean in 2009. The NT planting of soybean into standing rye before termination (crimping or mowing) facilitated timely planting of soybean, as well as effective, season-long weed suppression, suggesting that those approaches to rye and weed management are of less risk than those typically perceived by growers. Our results suggest that NT systems in winter rye provide effective weed-management alternatives to the typical tillage-intensive approach for organic soybean production.


Sign in / Sign up

Export Citation Format

Share Document