Nodule Development in Legumes

Author(s):  
Daniel J. Gage
Keyword(s):  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Krista L. Plett ◽  
Sean L. Bithell ◽  
Adrian Dando ◽  
Jonathan M. Plett

Abstract Background The ability of chickpea to obtain sufficient nitrogen via its symbiotic relationship with Mesorhizobium ciceri is of critical importance in supporting growth and grain production. A number of factors can affect this symbiotic relationship including abiotic conditions, plant genotype, and disruptions to host signalling/perception networks. In order to support improved nodule formation in chickpea, we investigated how plant genotype and soil nutrient availability affect chickpea nodule formation and nitrogen fixation. Further, using transcriptomic profiling, we sought to identify gene expression patterns that characterize highly nodulated genotypes. Results A study involving six chickpea varieties demonstrated large genotype by soil nitrogen interaction effects on nodulation and further identified agronomic traits of genotypes (such as shoot weight) associated with high nodulation. We broadened our scope to consider 29 varieties and breeding lines to examine the relationship between soilborne disease resistance and the number of nodules developed and real-time nitrogen fixation. Results of this larger study supported the earlier genotype specific findings, however, disease resistance did not explain differences in nodulation across genotypes. Transcriptional profiling of six chickpea genotypes indicates that genes associated with signalling, N transport and cellular localization, as opposed to genes associated with the classical nodulation pathway, are more likely to predict whether a given genotype will exhibit high levels of nodule formation. Conclusions This research identified a number of key abiotic and genetic factors affecting chickpea nodule development and nitrogen fixation. These findings indicate that an improved understanding of genotype-specific factors affecting chickpea nodule induction and function are key research areas necessary to improving the benefits of rhizobial symbiosis in chickpea.


2016 ◽  
Vol 29 (11) ◽  
pp. 862-877 ◽  
Author(s):  
Hari B. Krishnan ◽  
Alaa A. Alaswad ◽  
Nathan W. Oehrle ◽  
Jason D. Gillman

Legumes form symbiotic associations with soil-dwelling bacteria collectively called rhizobia. This association results in the formation of nodules, unique plant-derived organs, within which the rhizobia are housed. Rhizobia-encoded nitrogenase facilitates the conversion of atmospheric nitrogen into ammonia, which is utilized by the plants for its growth and development. Fatty acids have been shown to play an important role in root nodule symbiosis. In this study, we have investigated the role of stearoyl-acyl carrier protein desaturase isoform C (SACPD-C), a soybean enzyme that catalyzes the conversion of stearic acid into oleic acid, which is expressed in developing seeds and in nitrogen-fixing nodules. In-depth cytological investigation of nodule development in sacpd-c mutant lines M25 and MM106 revealed gross anatomical alteration in the sacpd-c mutants. Transmission electron microscopy observations revealed ultrastructural alterations in the sacpd-c mutants that are typically associated with plant defense response to pathogens. In nodules of two sacpd-c mutants, the combined jasmonic acid (JA) species (JA and the isoleucine conjugate of JA) were found to be reduced and 12-oxophytodienoic acid (OPDA) levels were significantly higher relative to wild-type lines. Salicylic acid levels were not significantly different between genotypes, which is divergent from previous studies of sacpd mutant studies on vegetative tissues. Soybean nodule phytohormone profiles were very divergent from those of roots, and root profiles were found to be almost identical between mutant and wild-type genotypes. The activities of antioxidant enzymes, ascorbate peroxidase, and superoxide dismutase were also found to be higher in nodules of sacpd-c mutants. PR-1 gene expression was extremely elevated in M25 and MM106, while the expression of nitrogenase was significantly reduced in these sacpd-c mutants, compared with the parent ‘Bay’. Two-dimensional gel electrophoresis and matrix-assisted laser desorption-ionization time of flight mass spectrometry analyses confirmed sacpd-c mutants also accumulated higher amounts of pathogenesis-related proteins in the nodules. Our study establishes a major role for SACPD-C activity as essential for proper maintenance of soybean nodule morphology and physiology and indicates that OPDA signaling is likely to be involved in attenuation of nodule biotic defense responses.


1992 ◽  
Vol 85 (2) ◽  
pp. 253-265 ◽  
Author(s):  
D. P. S. Verma ◽  
C.-A. Hu ◽  
M. Zhang

Sign in / Sign up

Export Citation Format

Share Document