Effects of Seasonal Climate Variability and the Use of Climate Forecasts on Wheat Supply in the United States, Australia, and Canada

Author(s):  
Cynthia Rosenzweig ◽  
Harvey S. J. Hill ◽  
David Butler ◽  
Stephen W. Fuller ◽  
Graeme Hammer ◽  
...  
2018 ◽  
Vol 57 (9) ◽  
pp. 2129-2140 ◽  
Author(s):  
Toni Klemm ◽  
Renee A. McPherson

AbstractAgricultural decision-making that adapts to climate variability is essential to global food security. Crop production can be severely impacted by drought, flood, and heat, as seen in recent years in parts of the United States. Seasonal climate forecasts can help producers reduce crop losses, but many nationwide, publicly available seasonal forecasts currently lack relevance for agricultural producers, in part because they do not reflect their decision needs. This study examines the seasonal forecast needs of winter wheat producers in the southern Great Plains to understand what climate information is most useful and what lead times are most relevant for decision-making. An online survey of 119 agricultural advisers, cooperative extension agents in Oklahoma, Kansas, Texas, and Colorado, was conducted and gave insights into producers’ preferences for forecast elements, what weather and climate extremes have the most impact on decision-making, and the decision timing of major farm practices. The survey participants indicated that winter wheat growers were interested not only in directly modeled variables, such as total monthly rainfall, but also in derived elements, such as consecutive number of dry days. Moreover, these agricultural advisers perceived that winter wheat producers needed seasonal climate forecasts to have a lead time of 0–2.5 months—the planning lead time for major farm practices, like planting or harvesting. A forecast calendar and monthly rankings for forecast elements were created that can guide forecasters and advisers as they develop decision tools for winter wheat producers and that can serve as a template for other time-sensitive decision tools developed for stakeholder communities.


Eos ◽  
2007 ◽  
Vol 88 (43) ◽  
pp. 444
Author(s):  
Norman J. Rosenberg ◽  
Vikram M. Mehta ◽  
J. Rolf Olsen ◽  
Hans von Storch ◽  
Robert G. Varady ◽  
...  

2010 ◽  
Vol 23 (16) ◽  
pp. 4327-4341 ◽  
Author(s):  
Philip J. Pegion ◽  
Arun Kumar

Abstract A set of idealized global model experiments was performed by several modeling centers as part of the Drought Working Group of the U.S. Climate Variability and Predictability component of the World Climate Research Programme (CLIVAR). The purpose of the experiments was to assess the role of the leading modes of sea surface temperature (SST) variability on the climate over the continents, with particular emphasis on the influence of SSTs on surface climate variability and droughts over the United States. An analysis based on several models gives more creditability to the results since it relies on the assessment of impacts that are robust across different models. Coordinated atmospheric general circulation model (AGCM) simulations forced with three modes of SST variability were analyzed. The results show that the SST-forced precipitation variability over the central United States is dominated by the SST mode with maximum loading in the central Pacific Ocean. The SST mode with loading in the Atlantic Ocean, and a mode that is dominated by trends in SSTs, lead to a smaller response. Based on the response to the idealized SSTs, the precipitation response for the twentieth century was also reconstructed. A comparison with the Atmospheric Model Intercomparison Project (AMIP) simulations forced with the observed SSTs illustrates that the reconstructed precipitation variability was similar to the one in the AMIP simulations, further supporting the conclusion that the SST modes identified in the present analysis play a dominant role in the precipitation variability over the United States. One notable exception is the Dust Bowl of the 1930s, and further analysis regarding this major climate extreme is discussed.


Sign in / Sign up

Export Citation Format

Share Document