scholarly journals Genetic Gains for Grain Yield in CIMMYT's Semi‐Arid Wheat Yield Trials Grown in Suboptimal Environments

Crop Science ◽  
2018 ◽  
Vol 58 (5) ◽  
pp. 1890-1898 ◽  
Author(s):  
L. A. Crespo-Herrera ◽  
J. Crossa ◽  
J. Huerta-Espino ◽  
M. Vargas ◽  
S. Mondal ◽  
...  
2021 ◽  
Author(s):  
Alexandre Mondaini ◽  
Umesh Rosyara ◽  
Deepmala Sehgal ◽  
Susanne Dreisigacker

2011 ◽  
Vol 150 (1) ◽  
pp. 23-43 ◽  
Author(s):  
M. GUTIERREZ ◽  
M. P. REYNOLDS ◽  
W. R. RAUN ◽  
M. L. STONE ◽  
A. R. KLATT

SUMMARYThe relationships of normalized water index three (NWI-3) and canopy temperature (CT) with grain yield in north-west Mexico were determined in a set of wheat lines planted in multi-location yield trials. Advanced wheat lines developed by The International Maize and Wheat Improvement Centre (CIMMYT) were included and tested internationally in the trials including the 24th Elite Spring Wheat Yield Trial (ESWYT), the 11th Semi-Arid Wheat Yield Trial (SAWYT) and the 11th High Temperature Wheat Yield Trial (HTWYT). In north-west Mexico, NWI-3, CT and grain yield were determined in three growing seasons (2006, 2007 and 2008) and three environments (well irrigated, water-stressed and high-temperature), while grain yield was measured at international locations in the same advanced lines of the 24th ESWYT, the 11th SAWYT and the 11th HTWYT . The CIMMYT database was used to obtain grain yield from worldwide nurseries. The mean grain yield ranged from 0·8 to 12·7 t/ha for the 24th ESWYT (59 international sites), from 0·6 to 8·2 t/ha for the 11th SAWYT (28 international sites) and from 0·4 to 7·5 t/ha for the 11th HTWYT (26 international sites). NWI-3 and CT for the advanced lines in the three yield trials measured in north-west Mexico in distinct environments showed significant associations with the grain yield from a few international locations (0·12–0·23 of sites). Locations from Central Asia and North Africa had the best associations with NWI-3 and CT. The lack of more associations may be due to either an interaction of other factors (low rainfall and limited irrigations), which affected yield performance, or few of the advanced lines were well adapted to local growing conditions at each testing site, or a combination of these factors. The present results indicate that NWI-3 and CT have limited potential to predict yield performance at international sites.


Crop Science ◽  
2012 ◽  
Vol 52 (4) ◽  
pp. 1543-1552 ◽  
Author(s):  
Y. Manès ◽  
H. F. Gomez ◽  
L. Puhl ◽  
M. Reynolds ◽  
H. J. Braun ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Abdelhalim Elazab ◽  
Felipe Moraga ◽  
Alejandro del Pozo

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


2021 ◽  
Author(s):  
Sean M. Gleason ◽  
Lauren Nalezny ◽  
Cameron Hunter ◽  
Robert Bensen ◽  
Satya Chintamanani ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1295
Author(s):  
Ahossi Patrice Koua ◽  
Mirza Majid Baig ◽  
Benedict Chijioke Oyiga ◽  
Jens Léon ◽  
Agim Ballvora

Nitrogen (N) is a vital component of crop production. Wheat yield varies significantly under different soil available N. Knowing how wheat responds to or interacts with N to produce grains is essential in the selection of N use efficient cultivars. We assessed in this study variations among wheat genotypes for productivity-related traits under three cropping systems (CS), high-nitrogen with fungicide (HN-WF), high-nitrogen without fungicide (HN-NF) and low-nitrogen without fungicide (LN-NF) in the 2015, 2016 and 2017 seasons. ANOVA results showed genotypes, CS, and their interactions significantly affected agronomic traits. Grain yield (GY) increased with higher leaf chlorophyll content, importantly under CS without N and fungicide supply. Yellow rust disease reduced the GY by 20% and 28% in 2015 and 2016, respectively. Moreover, averaged over growing seasons, GY was increased by 23.78% under CS with N supply, while it was greatly increased, by 52.84%, under CS with both N and fungicide application, indicating a synergistic effect of N and fungicide on GY. Fungicide supply greatly improved the crop ability to accumulate N during grain filling, and hence the grain protein content. Recently released cultivars outperformed the older ones in most agronomic traits including GY. Genotype performance and stability analysis for GY production showed differences in their stability levels under the three CS. The synergistic effect of nitrogen and fungicide on grain yield (GY) and the differences in yield stability levels of recently released wheat cultivars across three CS found in this study suggest that resource use efficiency can be improved via cultivar selection for targeted CS.


2016 ◽  
Vol 67 (2) ◽  
pp. 137 ◽  
Author(s):  
Minuka M. Weerasinghe ◽  
Peter S. Kettlewell ◽  
Ivan G. Grove ◽  
Martin C. Hare

Application of film antitranspirant to wheat during late stem extension reduces drought damage to yield, but the mechanism is unknown. Field experiments under rain shelters were conducted over 3 years to test the hypothesis that film antitranspirant applied before meiosis alleviates drought-induced losses of pollen viability, grain number and yield. The film antitranspirant di-1-p-menthene was applied at third-node stage, and meiosis occurred at the early boot stage, with a range of 11–16 days after spray application in different years. Irrigated, unsprayed plots were included under the rain-shelters, and pollen viability, measured in 2 years in these plots, averaged 95.3%. Drought reduced pollen viability to 80.1% in unirrigated, unsprayed plots, but only to 88.6% in unirrigated plots treated with film antitranspirant. Grain number and yield of irrigated plots, measured in all years, were 16 529 m–2 and 9.55 t ha–1, respectively, on average. These were reduced by drought to 11 410 m–2 and 6.31 t ha–1 in unirrigated, unsprayed plots, but only to 12 878 m–2 and 6.97 t ha–1 in unirrigated plots treated with film antitranspirant. Thus compared with unirrigated, unsprayed plots, antitranspirant gave a grain yield benefit of 0.66 t ha–1. Further work is needed to validate the pollen viability mechanism in different climatic zones and with a wide range of cultivars.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


Sign in / Sign up

Export Citation Format

Share Document