Hydraulic Conductivity Function from Water Flow Similarity in Idealized- and Natural-Structure Pores

2010 ◽  
Vol 74 (3) ◽  
pp. 787-796 ◽  
Author(s):  
Lalit M. Arya ◽  
J.L. Heitman
2003 ◽  
Vol 67 (1) ◽  
pp. 373
Author(s):  
Lalit M. Arya ◽  
Feike J. Leij ◽  
Peter J. Shouse ◽  
Martinus Th. van Genuchten

2018 ◽  
Vol 49 (3) ◽  
pp. 299-308 ◽  
Author(s):  
Keisuke Inoue ◽  
Hiroomi Nakazato ◽  
Tomijiro Kubota ◽  
Koji Furue ◽  
Hiroshi Yoshisako ◽  
...  

2007 ◽  
Vol 7 (1) ◽  
pp. 59-66 ◽  
Author(s):  
D.E. Rolston

The science of soil-water physics and contaminant transport in porous media began a little more than a century ago. The first equation to quantify the flow of water is attributed to Darcy. The next major development for unsaturated media was made by Buckingham in 1907. Buckingham quantified the energy state of soil water based on the thermodynamic potential energy. Buckingham then introduced the concept of unsaturated hydraulic conductivity, a function of water content. The water flux as the product of the unsaturated hydraulic conductivity and the total potential gradient has become the accepted Buckingham-Darcy law. Two decades later, Richards applied the continuity equation to Buckingham's equation and obtained a general partial differential equation describing water flow in unsaturated soils. For combined water and solute transport, it had been recognized since the latter half of the 19th century that salts and water do not move uniformly. It wasn't until the middle of the 20th century that scientists began to understand the complex processes of diffusion, dispersion, and convection and to develop mathematical formulations for solute transport. Knowledge on water flow and solute transport processes has expanded greatly since the early part of the 20th century to the present.


2016 ◽  
Vol 96 (4) ◽  
pp. 496-503 ◽  
Author(s):  
Nathan E. Derby ◽  
Francis X.M. Casey ◽  
Thomas M. DeSutter

Spills of brine wastewater produced during oil well drilling are occurring more frequently in the Great Plains, resulting in crop production loss on affected soil. Remediation requires removal of salt from the topsoil, which might be accomplished by leaching to subsurface horizons or subsurface drains. A laboratory study determined the effects of brine on saturated hydraulic conductivity (Ks) of four nonimpacted surface soils from western North Dakota, USA. Repacked soil cores were subjected to saturated water flow, followed by one pore volume of brine. Subsequent saturated water flow leached brine from the soil and reduced Ks as much as 97% (0.086–0.003 cm h−1) within 24 h. Effluent total dissolved solids (TDS) approached 250 000 mg L−1 then declined (5 mg L−1) with continued leaching, but Ks did not increase. Removal of soluble salts during leaching increased the relative sodium concentrations (ESP > 55), causing clay swelling/dispersion and reduced Ks. Postbrine gypsum application (11.2 Mg ha−1) to replace exchangeable sodium with calcium did not improve Ks. This evidence suggests that if subsurface drainage is used for reclaiming brine-impacted soils that special attention be given to where dispersion/swelling is occurring, leaching water quality, and closely positioning calcium amendments within the high sodium zones.


Sign in / Sign up

Export Citation Format

Share Document