Erratum: The Effects of Long-Term Application of Organic Amendments on Soil Organic Carbon Accumulation

2015 ◽  
Vol 79 (3) ◽  
pp. 973-973
Author(s):  
Jinling Li ◽  
Gregory K. Evanylo
SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 107-123
Author(s):  
Claudia Cagnarini ◽  
Stephen Lofts ◽  
Luigi Paolo D'Acqui ◽  
Jochen Mayer ◽  
Roman Grüter ◽  
...  

Abstract. Soil contamination by trace elements (TEs) is a major concern for sustainable land management. A potential source of excessive inputs of TEs into agricultural soils are organic amendments. Here, we used dynamic simulations carried out with the Intermediate Dynamic Model for Metals (IDMM) to describe the observed trends of topsoil Zn (zinc), Cu (copper), Pb (lead) and Cd (cadmium) concentrations in a long-term (>60-year) crop trial in Switzerland, where soil plots have been treated with different organic amendments (farmyard manure, sewage sludge and compost). The observed ethylenediaminetetraacetic acid disodium salt (EDTA)-extractable concentrations ranged between 2.6 and 27.1 mg kg−1 for Zn, 4.9 and 29.0 mg kg−1 for Cu, 6.1–26.2 mg kg−1 for Pb, and 0.08 and 0.66 mg kg−1 for Cd. Metal input rates were initially estimated based on literature data. An additional, calibrated metal flux, tentatively attributed to mineral weathering, was necessary to fit the observed data. Dissolved organic carbon fluxes were estimated using a soil organic carbon model. The model adequately reproduced the EDTA-extractable (labile) concentrations when input rates were optimised and soil lateral mixing was invoked to account for the edge effect of mechanically ploughing the trial plots. The global average root mean square error (RMSE) was 2.7, and the average bias (overestimation) was −1.66, −2.18, −4.34 and −0.05 mg kg−1 for Zn, Cu, Pb and Cd, respectively. The calibrated model was used to project the long-term metal trends in field conditions (without soil lateral mixing), under stable climate and management practices, with soil organic carbon estimated by modelling and assumed trends in soil pH. Labile metal concentrations to 2100 were largely projected to remain near constant or to decline, except for some metals in plots receiving compost. Ecotoxicological thresholds (critical limits) were predicted to be exceeded presently under sewage sludge inputs and to remain so until 2100. Ecological risks were largely not indicated in the other plots, although some minor exceedances of critical limits were projected to occur for Zn before 2100. This study advances our understanding of TEs' long-term dynamics in agricultural fields, paving the way to quantitative applications of modelling at field scales.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2126
Author(s):  
Jinjing Lu ◽  
Shengping Li ◽  
Guopeng Liang ◽  
Xueping Wu ◽  
Qiang Zhang ◽  
...  

Long-term fertilization alters soil microbiological properties and then affects the soil organic carbon (SOC) pool. However, the interrelations of SOC with biological drivers and their relative importance are rarely analyzed quantitatively at aggregate scale. We investigated the contribution of soil microbial biomass, diversity, and enzyme activity to C pool in soil aggregate fractions (>5 mm, 2–5 mm, 1–2 mm, 0.25–1 mm, and <0.25 mm) at topsoil (0–15 cm) from a 27-year long-term fertilization regime. Compared to CK (no fertilization management), NP (inorganic fertilization alone) decreased all of the microbial groups’ biomass, while NPS and NPM (inorganic fertilization plus the incorporation of maize straw or composted cow manure) significantly reduced this negative effect of NP on microbial biomass and increased the microbial contribution to C pool. The results show that microbial variables were significantly correlated with SOC content in >0.25 mm aggregates rather than in <0.25 mm aggregates. Fungal variables (fungal, AM biomass, and F/B ratio) and enzyme activities (BXYL and LAP) in >0.25 mm aggregates explained 21% and 2% of C, respectively. Overall, organic matter addition could contribute to higher C storage by boosting fungal community and enzyme activity rather than by changing microbial community diversity in macro-aggregates.


2016 ◽  
Vol 232 ◽  
pp. 302-311 ◽  
Author(s):  
Anlei Chen ◽  
Xiaoli Xie ◽  
Maxim Dorodnikov ◽  
Wei Wang ◽  
Tida Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document