scholarly journals Angiotensin converting enzyme inhibitory peptides in Finnish cereals: a database survey

2008 ◽  
Vol 13 (1-2) ◽  
pp. 39 ◽  
Author(s):  
J. LOPONEN

Angiotensin converting enzyme (ACE) regulates blood pressure (BP) by hydrolytic actions. ACEinhibitors are widely used in the pharmacological treatment of hypertension. Certain food-derived peptides can also inhibit the activity of ACE. This study shows the occurrences of known ACE-inhibitory peptides in cereal storage protein structures. A literature search yielded thirty-nine candidate peptides. Of these, twenty-two peptides were found to occur in the cereal storage proteins. For instance, of the tripeptides (isoleucine-proline-proline or valine-proline-proline) that lower BP in fermented milk products either one appears in cereal prolamins. In addition, oat globulins possess seven of the candidate peptides in their structures, whereas tripeptides leucine-glutamine-proline (LQP) and valine-serine-proline (VSP) occur repeatedly in C-hordeins and ù-secalins (LQP), and D-hordeins (VSP). Cereal storage proteins, thus, appeared as potential sources of ACE-inhibitory peptides. Novel cereal products with BP-lowering effects may be developed by liberation of the target peptides.;

1999 ◽  
Vol 66 (3) ◽  
pp. 431-439 ◽  
Author(s):  
YOO-KYEONG KIM ◽  
SUN YOON ◽  
DAE-YEUL YU ◽  
BO LÖNNERDAL ◽  
BONG-HYUN CHUNG

Recombinant human αs1-casein expressed in Escherichia coli was purified and digested with trypsin in an attempt to find peptides with angiotensin-I-converting enzyme (ACE) inhibitory activity. Three novel ACE inhibitory peptides, A-II, B-II and C, were isolated and their amino acid sequences identified as Tyr–Pro–Glu–Arg (residues 8–11), Tyr–Tyr–Pro–Gln–Ile–Met–Gln–Tyr (residues 136–143) and Asn–Asn–Val–Met–Leu–Gln–Trp (residues 164–170) respectively. ACE inhibitory activities were measured for the corresponding synthetic peptides, and the ACE IC50 (the amount of peptide causing 50% inhibition of ACE activity) values of A-II, B-II and C estimated to be 132·5, 24·8 and 41·0 μmol/l respectively. Peptides A-II and C were resistant to further digestion by pepsin, whereas peptide B-II was hydrolysed. All three peptides were resistant to digestion by chymotrypsin. These ACE inhibitory peptides may prove useful for oral administration in the treatment of hypertension.


2018 ◽  
Vol 45 (3) ◽  
pp. 215-222 ◽  
Author(s):  
Zhenyan Jiang ◽  
Hansi Zhang ◽  
Xuefeng Bian ◽  
Jingfeng Li ◽  
Jing Li ◽  
...  

2015 ◽  
Vol 176 ◽  
pp. 64-71 ◽  
Author(s):  
Alan Connolly ◽  
Martina B. O’Keeffe ◽  
Charles O. Piggott ◽  
Alice B. Nongonierma ◽  
Richard J. FitzGerald

2017 ◽  
Vol 3 (4) ◽  
pp. 231-240 ◽  
Author(s):  
A. Cito ◽  
M. Botta ◽  
V. Francardi ◽  
E. Dreassi

Hypertension is well known as one of the major risk for cardiovascular diseases which annually affect millions of people. The angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation process. Indeed, hypertension treatment by synthetic ACE inhibitors (e.g. captopril, lisinopril and ramipril) is effective; however, their use can cause serious side effects, such as hypotension, cough, reduced renal function and angioedema. Thus, research was focused on natural ACE inhibitory peptides sources such as foodstuffs and also, more recently, edible insects. In the last decades, ACE inhibitory activity has been detected in protein hydrolysates from insect species belonging to the orders of Coleoptera, Diptera, Hymenoptera, Lepidoptera and also Orthoptera. Further investigations led to identify specific ACE inhibitory peptides from the silkworm Bombyx mori (Lepidoptera: Bombycidae), the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae), the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) and also from the weaver ant Oecophylla smaragdina (Hymenoptera: Formicidae). Even if ACE inhibitory activity of these bioactive peptides has been in vitro assayed and is comparable to those of some bioactive peptides derived from other animal protein sources, the in vivo effectiveness of most of these bioactive peptides still needs to be confirmed. The aim of this review is to present an outline of the currently available data on the potential use of insects for hypertension treatment with a focus on the ACE inhibitory peptides identified in these invertebrates to date.


Sign in / Sign up

Export Citation Format

Share Document