The Mean Temperature Difference Method for Micro Heat Exchanger Analysis Considering Property Variation

2017 ◽  
Author(s):  
Ankush D. Tharkar ◽  
Shripad P. Mahulikar
2020 ◽  
Vol 70 (1) ◽  
pp. 47-56
Author(s):  
Gužela Štefan ◽  
Dzianik František

AbstractThe heat exchangers are used to heat or cool the material streams. To calculate the heat exchanger, it is important to know the type of heat exchanger and its operating characteristic. This characteristic determines one of the key variables (e.g., F, NTUmin, or θ). In some special cases, it is not necessary to know its operating characteristic to calculate the heat exchanger. This article deals with these special cases. The article also contains a general dependency that allows checking the key variables related to a given heat exchanger.


1983 ◽  
Vol 105 (3) ◽  
pp. 592-597 ◽  
Author(s):  
A. Pignotti ◽  
G. O. Cordero

Computer generated graphs are presented for the mean temperature difference in typical air cooler configurations, covering the combinations of numbers of passes and rows per pass of industrial interest. Two sets of independent variables are included in the graphs: the conventional one (heat capacity water ratio and cold fluid effectiveness), and the one required in an optimization technique of widespread use (hot fluid effectiveness and the number of heat transfer units). Flow arrangements with side-by-side and over-and-under passes, frequently found in actual practice, are discussed through examples.


1908 ◽  
Vol 28 ◽  
pp. 66-84 ◽  
Author(s):  
Sutherland Simpson

SUMMARYThe body-temperature of the following fishes, crustaceans, and echinoderms has been examined and compared with the temperature of the water in which they live:—Cod-fish (Gadus morrhua), ling (Molva vulgaris), torsk (Brosmius brosme), coal-fish or saithe (Gadus virens), haddock (Gadus œgelfinus), flounder (Pleuronectes flesus), smelt (Osmerus eperlanus), dog-fish (Scyllium catulus), shore crab (Carcinus mœnas), edible crab (Cancer pagurus), lobster (Homarus vulgaris), sea-urchin (Echinus esculentus), and starfish (Asterias rubens). The minimum, maximum, and mean temperature difference for each species are given in the following table:—The excess of temperature is most evident in the larger specimens. This is well shown in the case of the coal-fish, where in the adult it was 0°·7 C., and in the great majority (11 out of 12) of the young of the first year, 0°·0 C. The body-weight and the conditions under which the fish are captured probably form the most important factors in determining the temperature difference.In 14 codfish, where the rectal, blood, and muscle temperatures were recorded in the same individual, it was found to be highest in the muscle and lowest in the rectum, the mean temperature difference being 0°·46 C. for the muscle, 0°·41 C for the blood, and 0°·36 C. for the rectum.


2019 ◽  
Vol 8 (2) ◽  
pp. 74-78
Author(s):  
Muhammad Zubair ◽  
Ghulam Saqulain ◽  
Arfat Jawaid

Background: Acute Otitis Media (AOM) is a common upper respiratory tract infection (URTI) in children and usually presents with fever and otalgia. AOM is characterized by congested tympanic membrane and possible increase in temperature, which might be picked up by infrared tympanic thermometry. The objective of this study was to compare the temperature difference of tympanic membrane of affected ear with the unaffected ear and axilla in unilateral acute otitis media, and compare it with the control group.Material and Methods: This case control study comprised of 200 cases of both genders, aged up to 5 years. They were divided into two groups; Group A included 100 clinically diagnosed cases of acute otitis media (AOM), who reported in the ENT Outpatient Department (OPD) and Group B included 100 controls who presented in General Filter Clinic with no ear complaints. Cases with chronic ear disease, ear discharge, and use of local drugs including ear drops, impacted ear wax, tragal tenderness and congenital malformations of the ear were excluded by taking a detailed history. Clinical examination including otoscopy by an expert was done before subjecting patients to axillary and tympanic thermometry measurements and data recording. Data was collected and tabulated using Microsoft Excel Worksheet and analyzed by SPSS 16. Qualitative data like gender were presented as percentage and ratio, while means and standard deviation were calculated for the quantitative data. Difference between the means of experimental and control groups were analyzed by independent sample t-test and P value of less than or equal to 0.05 was taken as significant.Results: This study included 100 cases of unilateral AOM and 100 normal controls without AOM. In patients with AOM, the mean temperature difference between the affected ear and axilla was 1.41ºF as compared to 0.075ºF in controls (p=0.026). While the mean temperature difference between the affected ear and other ear was 0.65ºF as compared to 0.19ºF in controls (p=0.069).Conclusion: In acute otitis media, the temperature of affected ear is significantly higher than axilla but was not significantly higher than the other ear. The finding may help establish thermometry as a diagnostic tool in clinics manned by doctors not competent to do otoscopy.


1975 ◽  
Vol 97 (1) ◽  
pp. 5-8 ◽  
Author(s):  
W. Roetzel ◽  
F. J. L. Nicole

An approximate equation together with empirical coefficients is presented for the fast calculation of the mean temperature difference of nine countercurrent cross-flow arrangements, as applied in air-cooled heat exchangers. The same equation can be used for other flow systems, as demonstrated for one shell-and-tube arrangement.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Aashish Gupta ◽  
Jacob Puliyel ◽  
Bhawana Garg ◽  
Pramod Upadhyay

Abstract Background To study mean core to peripheral temperature difference (CPTD) and the mean lactate levels over the first 6 h of admission to hospital, as indicators of prognosis in critically ill children. Methods A prospective observational study in a tertiary level Pediatrics ICU in Delhi, India. Seventy eight paediatric patients from 1 month to 12 years were studied. Children with physical trauma, post-surgical patients and patients with peripheral vascular disease were excluded. Core temperature (skin over temporal artery) to peripheral temperature (big toe) difference was measured repeatedly every minute over 6 h and mean of temperature difference was calculated. Pediatric Risk of Mortality (PRISM) II, lactate clearance and mean lactate levels during that time were also studied. In-hospital mortality was used as the outcome measure. Results Mean temperature difference During the first 6 h after admission the mean temperature difference was 9.37 ± 2 °C in those who died and 3.71 ± 2.27 °C in those who survived (p < 0.0001). The area under the receiver operating curve (AUROC) was 0.953 (p < 0.0001). The comparable AUROC of PRISM II was 0.999 (p < 0.0001). Mean Lactate Mean lactate level in the first 6 h was 7.1 ± 2.02 mg/dl in those who died compared to 2.86 ± 0.87 mg/dl in those who survived (p < 0.0001). The AUROC curve for mean lactate was 0.989 (95% CI = 0.933 to 0.999; p < 0.0001). AUROC for the lactate clearance was 0.682 (p = 0.0214). Conclusions The mean core to peripheral temperature difference over the first 6 h is an easy-to-use and non-invasive method that is useful to predict mortality in children admitted to the Pediatric ICU. The mean lactate during the first 6 h of Pediatric ICU admission is a better index of prognosis than the lactate clearance over the same time period. They may be used as components of a scoring system to predict mortality.


Sign in / Sign up

Export Citation Format

Share Document