Kidney Exchange with Multiple Donors

2019 ◽  
Author(s):  
Oren Gilon ◽  
Tal Gilon ◽  
Assaf Romm
2002 ◽  
Vol 719 ◽  
Author(s):  
K. Thonke ◽  
N. Kerwien ◽  
A. Wysmolek ◽  
M. Potemski ◽  
A. Waag ◽  
...  

AbstractWe investigate by photoluminescence (PL) nominally undoped, commercially available Zinc Oxide substrates (from Eagle Picher) grown by seeded chemical vapor transport technique in order to identify residual donors and acceptors. In low temperature PL spectra the dominant emission comes from the decay of bound exciton lines at around 3.36 eV. Zeeman measurements allow the identification of the two strongest lines and some weaker lines in-between as donorrelated. From the associated two-electron satellite lines binding energies of the major donors of 48 meV and 55 meV, respectively, can be deduced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuanyuan Xie ◽  
Shuo Liu ◽  
Liudi Wang ◽  
Hui Yang ◽  
Chenxu Tai ◽  
...  

Abstract Background To investigate the heterogeneities of human umbilical cord mesenchymal stromal cells (HUCMSCs) derived from different donors and their therapeutic variations when applied to mouse liver fibrosis model. Methods The characteristics of HUCMSCs derived from multiple donors were comprehensively analyzed including expressions of surface markers, viability, growth curve, karyotype analysis, tumorigenicity, differentiation potentials, and immune regulation capability. Then, the HUCMSCs with distinct immunomodulatory effects were applied to treat mouse liver fibrosis and their therapeutic effects were observed. Results The HUCMSCs derived from multiple donors kept a high consistency in surface marker expressions, viability, growth curve, and tumorigenicity in nude mice but had robust heterogeneities in differentiation potentials and immune regulations. In addition, three HUCMSC lines applied to mice liver fibrosis model had different therapeutic outcomes, in line with individual immune regulation capability. Conclusion The HUCMSCs derived from different donors have individual heterogeneity, which potentially lead to distinct therapeutic outcomes in mouse liver fibrosis, indicating we could make use of the donor-variation of MSCs to screen out guaranteed general indicators of MSCs for specific diseases in further stromal cell therapy.


2016 ◽  
Vol 17 (3) ◽  
pp. 782-790 ◽  
Author(s):  
M. A. Rees ◽  
T. B. Dunn ◽  
C. S. Kuhr ◽  
C. L. Marsh ◽  
J. Rogers ◽  
...  

2016 ◽  
Vol 15 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Kamil Solarczyk ◽  
Krzysztof Wojcik ◽  
Pawel Kulakowski
Keyword(s):  

Math Horizons ◽  
2010 ◽  
Vol 18 (1) ◽  
pp. 26-29
Author(s):  
Olivia M. Carducci

Author(s):  
D. Moraru ◽  
A. Samanta ◽  
T. Tsutaya ◽  
Y. Takasu ◽  
L. T. Anh ◽  
...  

2002 ◽  
Vol 353 (5-6) ◽  
pp. 353-358 ◽  
Author(s):  
Ya-Ping Sun ◽  
Weijie Huang ◽  
Radhakishan Guduru ◽  
Robert B. Martin

2016 ◽  
Author(s):  
Tayfun Sonmez ◽  
M. Utku nver ◽  
zggr YYlmaz
Keyword(s):  

2021 ◽  
Author(s):  
Shristi Shrestha ◽  
Diane C. Saunders ◽  
John T. Walker ◽  
Joan Camunas-Soler ◽  
Xiao-Qing Dai ◽  
...  

ABSTRACTIslet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α and β cells and changes in their expression are associated with developmental state and diabetes. However, the implications of heterogeneity in TF expression across islet cell populations are not well understood. To define this TF heterogeneity and its consequences for cellular function, we profiled >40,000 cells from normal human islets by scRNA-seq and stratified α and β cells based on combinatorial TF expression. Subpopulations of islet cells co-expressing ARX/MAFB (α cells) and MAFA/MAFB (β cells) exhibited greater expression of key genes related to glucose sensing and hormone secretion relative to subpopulations expressing only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. By Patch-seq, MAFA/MAFB co-expressing β cells showed enhanced electrophysiological activity. Thus, these results indicate combinatorial TF expression in islet α and β cells predicts highly functional, mature subpopulations.


2021 ◽  
Vol 11 ◽  
Author(s):  
Congrong Niu ◽  
Bill Smith ◽  
Yurong Lai

The induction potentials of ligand-activated nuclear receptors on metabolizing enzyme genes are routinely tested for new chemical entities. However, regulations of drug transporter genes by the nuclear receptor ligands are underappreciated, especially in differentiated human hepatocyte cultures. In this study, gene induction by the ligands of constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR) was characterized in sandwich-cultured human hepatocytes (SCHH) from multiple donors. The cells were treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), omeprazole (OP), 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO) and phenobarbital (PB) for three days. RNA samples were analyzed by qRT-PCR method. As expected, CITCO, the direct activator, and PB, the indirect activator of CAR, induced CYP3A4 (31 and 40-fold), CYP2B6 (24 and 28-fold) and UGT1A1 (2.9 and 4.2-fold), respectively. Conversely, TCDD and OP, the activators of AhR, induced CYP1A1 (38 and 37-fold), and UGT1A1 (4.3 and 5.0-fold), respectively. In addition, OP but not TCDD induced CY3A4 by about 61-fold. Twenty-four hepatic drug transporter genes were characterized, and of those, SLC51B was induced the most by PB and OP by about 3.3 and 6.5 fold, respectively. Marginal inductions (about 2-fold) of SLC47A1 and SLCO4C1 genes by PB, and ABCG2 gene by TCDD were observed. In contrast, SLC10A1 gene was suppressed about 2-fold by TCDD and CITCO. While clinical relevance of SLC51B gene induction or SLC10A1 gene suppression warrants further investigation, the results verified that the assessment of transporter gene inductions are not required for new drug entities, when a drug does not remarkably induce metabolizing enzyme genes by CAR and AhR activation.


Sign in / Sign up

Export Citation Format

Share Document