Neisseria gonorrhoeae Isolates in Shanghai Exhibited Reduced Susceptibility to Extended-Spectrum Cephalosporins and Clonal Expansion

2020 ◽  
Author(s):  
Yuan Dong ◽  
Yang Yang ◽  
Ying Wang ◽  
Irene Martin ◽  
Walter Demczuk ◽  
...  
2011 ◽  
Vol 56 (2) ◽  
pp. 916-920 ◽  
Author(s):  
Shu-ichi Nakayama ◽  
Chanwit Tribuddharat ◽  
Sasiprapa Prombhul ◽  
Ken Shimuta ◽  
Somporn Srifuengfung ◽  
...  

ABSTRACTNeisseria gonorrhoeaeis a major public health problem globally, especially because the bacterium has developed resistance to most antimicrobials introduced for first-line treatment of gonorrhea. In the present study, 96N. gonorrhoeaeisolates with high-level resistance to penicillin from 121 clinical isolates in Thailand were examined to investigate changes related to their plasmid-mediated penicillin resistance and their molecular epidemiological relationships. A β-lactamase (TEM) gene variant,blaTEM-135, that may be a precursor in the transitional stage of a traditionalblaTEM-1gene into an extended-spectrum β-lactamase (ESBL), possibly causing high resistance to all extended-spectrum cephalosporins inN. gonorrhoeae, was identified. Clonal analysis using multilocus sequence typing (MLST) andN. gonorrhoeaemultiantigen sequence typing (NG-MAST) revealed the existence of a sexual network among patients from Japan and Thailand. Molecular analysis of theblaTEM-135gene showed that the emergence of this allele might not be a rare genetic event and that the allele has evolved in different plasmid backgrounds, which results possibly indicate that it is selected due to antimicrobial pressure. The presence of theblaTEM-135allele in the penicillinase-producingN. gonorrhoeaepopulation may call for monitoring for the possible emergence of ESBL-producingN. gonorrhoeaein the future. This study identified ablaTEMvariant (blaTEM-135) that is a possible intermediate precursor for an ESBL, which warrants international awareness.


2014 ◽  
Vol 58 (12) ◽  
pp. 7576-7578 ◽  
Author(s):  
David Whiley ◽  
Ella Trembizki ◽  
Cameron Buckley ◽  
Kevin Freeman ◽  
Andrew Lawrence ◽  
...  

ABSTRACTPenicillinase-producingNeisseria gonorrhoeae(PPNG) carrying theblaTEM-135gene is of particular concern, as it is considered a stepping stone toward resistance to extended-spectrum cephalosporins. Here, we sought to characterize plasmid types and the occurrence of theblaTEM-135gene forN. gonorrhoeaeclinical isolates from Australia. We found thatblaTEM-135was prevalent in Australian PPNG and was detected on all three major plasmid types.


2020 ◽  
Author(s):  
Wenjing Le ◽  
Xiaohong Su ◽  
Xiangdi Lou ◽  
Xuechun Li ◽  
Xiangdong Gong ◽  
...  

ABSTRACTPreviously, we reported potent activity of a novel spiropyrimidinetrione, zoliflodacin, against N. gonorrhoeae isolates from symptomatic men in Nanjing, China, collected in 2013. Here, we investigated trends of susceptibilities of zoliflodacin in 986 gonococcal isolates collected from men between 2014 and 2018. N. gonorrhoeae isolates were tested for susceptibility to zoliflodacin and seven other antibiotics. Mutations in gyrA, gyrB, parC and parE genes were determined by PCR and DNA sequencing. The MIC of zoliflodacin for N. gonorrhoeae ranged from ≤0.002 to 0.25 mg/L; the overall MIC50s and MIC90s were 0.06 mg/L and 0.125mg/L in 2018, increasing two-fold from 2014. However, the percent of isolates with lower zoliflodacin MICs declined in each year sequentially while the percent with higher MICs increased yearly (P≤0.00001). All isolates were susceptible to spectinomycin but resistant to ciprofloxacin (MIC ≥1 μg/ml); 21.2% (209/986) were resistant to azithromycin (≥1 μg/ml), 43.4% (428/986) were penicillinase-producing (PPNG), 26.9% (265/986) tetracycline-resistant (TRNG) and 19.4% (191/986) were multi-drug resistant (MDR) isolates. Among 143 isolates with higher zoliflodacin MICs (0.125-0.25 mg/L), all had quinolone resistance associated double or triple mutations in gyrA; 139/143 (97.2%) also had mutations in parC. There were no D429N/A and/or K450T mutations in GyrB identified in the 143 isolates with higher zoliflodacin MICs; a S467N mutation in GyrB was identified in one isolate. We report that zoliflodacin has excellent in vitro activity against clinical gonococcal isolates, including those with high-level resistance to ciprofloxacin, azithromycin and extended spectrum cephalosporins.


2019 ◽  
Vol 64 (3) ◽  
Author(s):  
Walter Demczuk ◽  
Irene Martin ◽  
Pam Sawatzky ◽  
Vanessa Allen ◽  
Brigitte Lefebvre ◽  
...  

ABSTRACT The emergence of Neisseria gonorrhoeae strains that are resistant to azithromycin and extended-spectrum cephalosporins represents a public health threat, that of untreatable gonorrhea infections. Multivariate regression modeling was used to determine the contributions of molecular antimicrobial resistance determinants to the overall antimicrobial MICs for ceftriaxone, cefixime, azithromycin, tetracycline, ciprofloxacin, and penicillin. A training data set consisting of 1,280 N. gonorrhoeae strains was used to generate regression equations which were then applied to validation data sets of Canadian (n = 1,095) and international (n = 431) strains. The predicted MICs for extended-spectrum cephalosporins (ceftriaxone and cefixime) were fully explained by 5 amino acid substitutions in PenA, A311V, A501P/T/V, N513Y, A517G, and G543S; the presence of a disrupted mtrR promoter; and the PorB G120 and PonA L421P mutations. The correlation of predicted MICs within one doubling dilution to phenotypically determined MICs of the Canadian validation data set was 95.0% for ceftriaxone, 95.6% for cefixime, 91.4% for azithromycin, 98.2% for tetracycline, 90.4% for ciprofloxacin, and 92.3% for penicillin, with an overall sensitivity of 99.9% and specificity of 97.1%. The correlations of predicted MIC values to the phenotypically determined MICs were similar to those from phenotype MIC-only comparison studies. The ability to acquire detailed antimicrobial resistance information directly from molecular data will facilitate the transition to whole-genome sequencing analysis from phenotypic testing and can fill the surveillance gap in an era of increased reliance on nucleic acid assay testing (NAAT) diagnostics to better monitor the dynamics of N. gonorrhoeae.


Apmis ◽  
2011 ◽  
Vol 119 (6) ◽  
pp. 356-363 ◽  
Author(s):  
ATHENA LIMNIOS ◽  
JOHN TAPSALL ◽  
JENNY KAHLMETER ◽  
TIFFANY HOGAN ◽  
SANGHAMITRA RAY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document