scholarly journals Pyrethroid Resistance in Anopheles gambiae Not Associated with Insecticide-Treated Mosquito Net Effectiveness Across Sub-Saharan Africa

2020 ◽  
Author(s):  
David A. Larsen ◽  
Rachel L. Church
Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 146 ◽  
Author(s):  
Aaron Gross ◽  
Jeffrey Bloomquist

Anopheles gambiae Giles (Diptera: Culicidae) is the most prolific malaria vector in sub-Saharan Africa, where widespread insecticide resistance has been reported. An. gambiae laboratory strains are commonly used to study the basic biology of this important mosquito vector, and also in new insecticide discovery programs, where insecticide-susceptible and -resistant strains are often used to screen new molecules for potency and cross-resistance, respectively. This study investigated the toxicity of permethrin, a Type-I pyrethroid insecticide, and etofenprox, a non-ester containing pyrethroid insecticide, against An. gambiae at three life stages. This characterization was performed with susceptible (G3; MRA-112) and resistant (Akdr; MRA-1280) An. gambiae strains; the Akdr strain is known to contain the L1014F mutation in the voltage-sensitive sodium channel. Surprisingly, etofenprox displays a lower level of resistance than permethrin against all stages of mosquitoes, except in a headless larval paralysis assay designed to minimize penetration factors. In first-instar An. gambiae larvae, permethrin had significant resistance, determined by the resistance ratio (RR50 = 5), but etofenprox was not significantly different (RR50 = 3.4) from the wild-type strain. Fourth-instar larvae displayed the highest level of resistance for permethrin (RR50 = 108) and etofenprox (RR50 = 35). Permethrin (PC50 = 2 ppb) and etofenprox (PC50 = 9 ppb) resulted in headless larval paralysis (5-h), but resistance, albeit lower, was still present for permethrin (RR50 = 5) and etofenprox (RR50 = 6.9). In adult female mosquitoes, permethrin displayed higher resistance (RR50 = 14) compared to etofenprox (RR50 = 4.3). The level of etofenprox resistance was different from that previously reported for a similar Akron An. gambiae laboratory strain (MRA-913). The chemical synergists piperonyl butoxide (PBO) and diethyl maleate (DEM) were able to synergize permethrin, but not etofenprox in the resistant strain (Akdr). In conclusion, multiple mechanisms are likely involved in pyrethroid resistance, but resistance profiles are dependent upon selection. Etofenprox is an effective insecticide against An. gambiae in the lab but will likely suffer from resistance in the field.


2021 ◽  
Author(s):  
Sawdetuo Aristide HIEN ◽  
Dieudonné D. Soma ◽  
Dramane Coulibaly ◽  
Abdoulaye Diabaté ◽  
Allison Belemvire ◽  
...  

Abstract Background Pyrethroid resistance poses a major threat to the efficacy of insecticide treated nets (ITNs) in Burkina Faso and throughout sub-Saharan Africa, particularly when resistance is present at high intensity. For such areas there are alternative ITNs available, including the synergist piperonyl butoxide (PBO)-based ITNs and dual active ingredient ITNs such as Interceptor G2 (treated with chlorfenapyr and alpha-cypermethrin). Before deploying alternative ITNs on a large scale it is crucial to characterize the resistance profiles of primary malaria vector species for evidence-based decision making Methods Larvae from the predominant vector, Anopheles gambiae s.l., were collected from 15 sites located throughout Burkina Faso and reared to adults for bioassays to assess insecticide resistance status. Resistance intensity assays were conducted using WHO tube tests to determine the level of resistance to pyrethroids commonly used on ITNs at 1x, 5x and 10x times the diagnostic dose. WHO tube tests were also used for PBO synergist bioassays with deltamethrin and permethrin. Bottle bioassays were conducted to determine susceptibility to chlorfenapyr at a dose of 100µg/bottle. Results WHO tube tests revealed high intensity resistance in An. gambiae s.l. to deltamethrin and alpha-cypermethrin in all sites tested. Resistance intensity to permethrin was either moderate or high in 13 sites. PBO pre-exposure followed by deltamethrin restored full susceptibility in 1 site but partially restored susceptibility in all but one of the remaining sites (often reaching mortality greater than 80%). PBO pre-exposure followed by permethrin partially restored susceptibility in 12 sites. There was no significant increase in permethrin mortality after PBO pre-exposure in Kampti, Karangasso-Vigué or Mangodara; while in Seguenega, Orodara and Bobo-Dioulasso there was a significant increase in mortality, but rates remained below 50%. Susceptibility to chlorfenapyr was confirmed in 14 sites. Conclusion High pyrethroid resistance intensity in An. gambiae s.l. is widespread across Burkina Faso and may be a predictor of reduced pyrethroid ITN effectiveness. PBO + deltamethrin ITNs would likely provide greater control than pyrethroid nets. However, since susceptibility in bioassays was not restored in most sites following pre-exposure to PBO, Interceptor G2 may be a better long-term solution as susceptibility was recorded to chlorfenapyr in nearly all sites. This study provides evidence supporting the introduction of both Interceptor G2 nets and PBO nets, which were distributed in Burkina Faso in 2019 as part of a mass campaign.


2020 ◽  
Author(s):  
David A. Larsen ◽  
Rachael L. Church

AbstractBackgroundPyrethroid resistance is a major concern for malaria vector control programs that predominantly rely on insecticide-treated mosquito nets (ITN). Contradictory results of the impact of resistance have been observed in field studies.MethodsWe combined continent-wide estimates of pyrethroid resistance in Anopheles gambiae from 2006-2017 with continent-wide survey data to assess the effect of increasing pyrethroid resistance on the effectiveness of ITNs to prevent malaria infections in sub-Saharan Africa. We utilized both a pooled-data approach and meta-regression of survey regions to assess how pyrethroid resistance affects the association between ITN ownership and malaria outcomes in children aged 6-59 months.FindingsITN ownership reduced the risk of malaria outcomes in both pooled and meta-regression approaches. In the pooled analysis, there was no observed interaction between ITN ownership and estimated level of pyrethroid resistance (Likelihood ratio [LR] test = 1.127 for the outcome of rapid diagnostic test confirmed malaria infection, p = 0.2885; LR test = 0.161 for the outcome of microscopy confirmed malaria infection, p = 0.161; LR test = 0.646 for the outcome of moderate or severe anemia, p = 0.4215). In the meta-regression approach the level of pyrethroid resistance did not explain any of the variance in subnational estimates of ITN effectiveness for any of the outcomes.InterpretationITNs decreased risk of malaria outcomes independent of the levels of pyrethroid resistance in the malaria vector populations.FundingDAL did not receive funding and RC received a SOURCE grant from Syracuse University for this project.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Aristide S. Hien ◽  
Dieudonné D. Soma ◽  
Samina Maiga ◽  
Dramane Coulibaly ◽  
Abdoulaye Diabaté ◽  
...  

Abstract Background Pyrethroid resistance poses a major threat to the efficacy of insecticide-treated nets (ITNs) in Burkina Faso and throughout sub-Saharan Africa, particularly where resistance is present at high intensity. For such areas, there are alternative ITNs available, including the synergist piperonyl butoxide (PBO)-based ITNs and dual active ingredient ITNs such as Interceptor G2 (treated with chlorfenapyr and alpha-cypermethrin). Before deploying alternative ITNs on a large scale it is crucial to characterize the resistance profiles of primary malaria vector species for evidence-based decision making. Methods Larvae from the predominant vector, Anopheles gambiae sensu lato (s.l.) were collected from 15 sites located throughout Burkina Faso and reared to adults for bioassays to assess insecticide resistance status. Resistance intensity assays were conducted using WHO tube tests to determine the level of resistance to pyrethroids commonly used on ITNs at 1×, 5 × and 10 × times the diagnostic dose. WHO tube tests were also used for PBO synergist bioassays with deltamethrin and permethrin. Bottle bioassays were conducted to determine susceptibility to chlorfenapyr at a dose of 100 µg/bottle. Results WHO tube tests revealed high intensity resistance in An. gambiae s.l. to deltamethrin and alpha-cypermethrin in all sites tested. Resistance intensity to permethrin was either moderate or high in 13 sites. PBO pre-exposure followed by deltamethrin restored full susceptibility in one site and partially restored susceptibility in all but one of the remaining sites (often reaching mortality greater than 80%). PBO pre-exposure followed by permethrin partially restored susceptibility in 12 sites. There was no significant increase in permethrin mortality after PBO pre-exposure in Kampti, Karangasso-Vigué or Mangodara; while in Seguenega, Orodara and Bobo-Dioulasso there was a significant increase in mortality, but rates remained below 50%. Susceptibility to chlorfenapyr was confirmed in 14 sites. Conclusion High pyrethroid resistance intensity in An. gambiae s.l. is widespread across Burkina Faso and may be a predictor of reduced pyrethroid ITN effectiveness. PBO + deltamethrin ITNs would likely provide greater control than pyrethroid nets. However, since susceptibility in bioassays was not restored in most sites following pre-exposure to PBO, Interceptor G2 may be a better long-term solution as susceptibility was recorded to chlorfenapyr in nearly all sites. This study provides evidence supporting the introduction of both Interceptor G2 nets and PBO nets, which were distributed in Burkina Faso in 2019 as part of a mass campaign.


Author(s):  
David A. Larsen ◽  
Rachael L. Church

Pyrethroid resistance is a major concern for malaria vector control programs that predominantly rely on insecticide-treated mosquito nets (ITNs). Contradictory results of the impact of resistance have been observed during field studies. We combined continent-wide estimates of pyrethroid resistance in Anopheles gambiae from 2006 to 2017, with continent-wide survey data to assess the effect of increasing pyrethroid resistance on the effectiveness of ITNs to prevent malaria infections in sub-Saharan Africa. We used a pooled-data approach and a meta-regression of survey regions to assess how pyrethroid resistance affects the association between ITN ownership and malaria outcomes for children 6 to 59 months of age. ITN ownership reduced the risk of malaria outcomes according to both the pooled and meta-regression approaches. According to the pooled analysis, there was no observed interaction between ITN ownership and estimated level of pyrethroid resistance (likelihood ratio [LR] test, 1.127 for malaria infection confirmed by the rapid diagnostic test, P = 0.2885; LR test = 0.161 for microscopy-confirmed malaria infection, P = 0.161; LR test = 0.646 for moderate or severe anemia, P = 0.4215). Using the meta-regression approach to determine the level of pyrethroid resistance did not explain any of the variance in subnational estimates of ITN effectiveness for any of the outcomes. ITNs decreased the risk of malaria independent of the levels of pyrethroid resistance in malaria vector populations.


2018 ◽  
Author(s):  
Emma Collins ◽  
Natasha M. Vaselli ◽  
Moussa Sylla ◽  
Abdoul H. Beavogui ◽  
James Orsborne ◽  
...  

AbstractThe threat of insecticide resistance across sub-Saharan Africa is anticipated to severely impact the continued effectiveness of malaria vector control. We investigated the effect of carbamate and pyrethroid resistance on Anopheles gambiae s.l age, Plasmodium falciparum infection and characterized molecular resistance mechanisms in Guinea. Pyrethroid resistance was intense, with survivors of ten times the insecticidal concentration required to kill susceptible individuals. The L1014F kdr allele was significantly associated with mosquito survival following deltamethrin or permethrin treatment (p=0.003 and p=0.04, respectively). N1575Y and I1527T mutations were identified in 13% and 10% of individuals, respectively, but neither conferred increased pyrethroid tolerance. Partial restoration of pyrethroid susceptibility following synergist pre-exposure suggest a role for mixed-function oxidases. Carbamate resistance was lower and significantly associated with the G119S Ace-1 mutation (p=0.001). Oocyst rates were 6.8% and 4.2% among resistant and susceptible mosquitoes, respectively; survivors of bendiocarb exposure were significantly more likely to be infected (p=0.03). Resistant mosquitoes had significantly lower parity rates; however, a subset of intensely pyrethroid-resistant vectors were more likely to be parous (p=0.042 and p=0.045, for survivors of five and ten times the diagnostic dose of insecticides, respectively). Our findings emphasize the need for additional studies directly assessing the influence of insecticide resistance on mosquito fitness.


2009 ◽  
Vol 45 (1) ◽  
pp. 35-46 ◽  
Author(s):  
J. ACHALEKE ◽  
M. VAISSAYRE ◽  
T. BREVAULT

SUMMARYIn sub-Saharan Africa, the bollworm complex, including Helicoverpa armigera, Diparopsis watersi and Earias spp., threatens the continued success of cotton production. Pyrethroid resistance in H. armigera led to serious crop losses while endosulfan, a suitable alternative to pyrethroids, was banned for cotton pest management. Five candidates with no cross-resistance to pyrethroids were evaluated in both on-station and on-farm trials from 2002 to 2006. Two applications were made at the early peak of H. armigera infestation in September, the period when pyrethroid use should be restricted for resistance management purposes. Results showed that, as expected, bollworm infestation consistently peaked from mid-September to mid-October. Spinosad, thiodicarb and emamectin-benzoate were the most suitable alternatives to reduce damage, regardless of the cotton bollworm species. Indoxacarb and lufenuron were less effective in controlling D. watersi. On-farm experiments confirmed the suitability of spinosad for control of pyrethroid-resistant H. armigera, particularly on late sown fields. These new chemistries offer control of bollworms which justify their relevance for pyrethroid resistance management in Cameroon and sub-Saharan Africa.


Author(s):  
Xin Zhang ◽  
Miao Li ◽  
Layla El Moussawi ◽  
Sally Saab ◽  
Shasha Zhang ◽  
...  

Humoral immune responses in animals are often tightly controlled by regulated proteolysis. This proteolysis is exerted by extracellular protease cascades, whose activation culminates in the proteolytic cleavage of key immune proteins and enzymes. A model for such immune system regulation is the melanization reaction in insects, where the activation of prophenoxidase (proPO) leads to the rapid formation of eumelanin on the surface of foreign entities such as parasites, bacteria and fungi. ProPO activation is tightly regulated by a network of so-called clip domain serine proteases, their proteolytically inactive homologs, and their serpin inhibitors. In Anopheles gambiae, the major malaria vector in sub-Saharan Africa, manipulation of this protease network affects resistance to a wide range of microorganisms, as well as host survival. However, thus far, our understanding of the molecular make-up and regulation of the protease network in mosquitoes is limited. Here, we report the function of the clip domain serine protease CLIPB10 in this network, using a combination of genetic and biochemical assays. CLIPB10 knockdown partially reversed melanotic tumor formation induced by Serpin 2 silencing in the absence of infection. CLIPB10 was also partially required for the melanization of ookinete stages of the rodent malaria parasite Plasmodium berghei in a refractory mosquito genetic background. Recombinant serpin 2 protein, a key inhibitor of the proPO activation cascade in An. gambiae, formed a SDS-stable protein complex with activated recombinant CLIPB10, and efficiently inhibited CLIPB10 activity in vitro at a stoichiometry of 1.89:1. Recombinant activated CLIPB10 increased PO activity in Manduca sexta hemolymph ex vivo, and directly activated purified M. sexta proPO in vitro. Taken together, these data identify CLIPB10 as the second protease with prophenoloxidase-activating function in An. gambiae, in addition to the previously described CLIPB9, suggesting functional redundancy in the protease network that controls melanization. In addition, our data suggest that tissue melanization and humoral melanization of parasites are at least partially mediated by the same proteases.


Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 732
Author(s):  
Chouaibou S. Mouhamadou ◽  
Kun Luan ◽  
Behi K. Fodjo ◽  
Andre J. West ◽  
Marian G. McCord ◽  
...  

Mosquito-borne malaria kills 429,000 people each year with the problem being acute in sub-Saharan Africa. The successes gained with long-lasting pyrethroid-treated bednets are now in jeopardy because of wide-spread, pyrethroid resistance in mosquitoes. Using crowd modeling theory normalized for standard bednet architecture, we were able to design an attract–trap–kill technology for mosquitoes that does not require insecticides. Using three-dimensional polyester knitting and heat fixation, trap funnels were developed with high capture efficacy with no egression under worst-case laboratory conditions. Field testing in Africa in WHO huts with Gen1-3 T (trap)-Nets validated our model, and as predicted, Gen3 had the highest efficacy with a 4.3-fold greater trap–kill rate with no deterrence or repellency compared to Permanet 2.0, the most common bednet in Africa. A T-Net population model was developed based on field data to predict community-level mosquito control compared to a pyrethroid bednet. This model showed the Gen3 non-insecticidal T-Net under field conditions in Africa against pyrethroid resistant mosquitoes was 12.7-fold more efficacious than single chemical, pyrethroid-treated nets.


Author(s):  
Daniel Edward Callies ◽  
Yasha Rohwer

Each year, over 200 million people are infected with the malaria parasite, nearly half a million of whom succumb to the disease. Emerging genetic technologies could, in theory, eliminate the burden of malaria throughout the world by intentionally eradicating the mosquitoes that transmit the disease. In this paper, we offer an ethical examination of the intentional eradication of Anopheles gambiae, the main malaria vector of sub-Saharan Africa. In our evaluation, we focus on two main considerations: the benefit of alleviating the malaria burden, and the loss of value that would accompany the eradication of the species. We outline a typology of the different ways in which species are valued or could be valuable, then use that typology to appraise the value of the species in question. We argue that Anopheles gambiae has minor (and redundant) instrumental value, little final subjective value and no objective final value.


Sign in / Sign up

Export Citation Format

Share Document