Production of an Alkaline Protease From Nocardiopsis Alba Om-4, a Haloalkaliphilic Actinobacteria in Solid-State Fermentation Using Agricultural Waste Products

2020 ◽  
Author(s):  
Foram Thakrar ◽  
Divya Goswami ◽  
Satya P. Singh
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2016 ◽  
Vol 182 (2) ◽  
pp. 511-528 ◽  
Author(s):  
R. Renganath Rao ◽  
M. Vimudha ◽  
N. R. Kamini ◽  
M. K. Gowthaman ◽  
B. Chandrasekran ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


2018 ◽  
Vol 8 (3) ◽  
pp. 424-431 ◽  
Author(s):  
Fernanda Castro Pires dos Santos ◽  
Joice Raísa Barbosa Cunha ◽  
Fábia Giovana Do val de Assis ◽  
Patrícia Lopes Leal

The adequate disposal of agricultural waste is one of the major concerns of public officials and a research challenge to obtain sustainable solutions to the problem. In this sense, the objective of this study was to evaluate the banana leaf stalk use as substrate in solid-state fermentation (SSF) for production of amylolytic and cellulolytic enzymes by Penicillium spp. LEMI A11 strain grown under different substrate concentrations, pH and temperature. Effects of different pH conditions (5.0 and 6.0), temperature (30 and 35 °C) and substrate concentration 70 and 90% (in relation to the final volume) of the fermentation were evaluated over 120 hours of fermentation. The results indicated that Penicillium spp. LEMI A11 was able to use the banana stalk as substrate under SSF. The maximum activities for amylase dextraining, amylase saccharifying and CMCase were 0.18; 0.13 and 04 U.g-1, respectively. The effect of environmental factors related to the substrate concentration was significant for saccharifying amylase and CMCase activity only. The interaction between the environmental factors tested was significant for the dextrinizing amylase activity only. It was verified enzyme activity reduction after 96 hours of fermentation for all enzymes. It concluded that banana stalk is an alternative carbon source to be used in SSF for enzyme production by of Penicillium spp. LEMI A11.


2016 ◽  
Vol 4 (2) ◽  
pp. 97
Author(s):  
Sinthuja Karuppaija ◽  
Kapilan Ranganathan ◽  
Vasantharuba Seevaratnam

Background: The Palmyrah (Borrasus flabellifer L.) fruit pulp has the bitter compound flabelliferin (a tetraglycoside) which can be hydrolyzed by naringinase enzyme. The diverse groups of filamentous fungi and bacteria that live in different substrates have the capacity of producing extracellular naringinase enzyme which is of tremendous industrial value.Objective: The objective of the study was to isolate the naringinase producing fungal strains from Palmyrah and to identify the best naringinase producer under liquid and solid state fermentation systems.Methods: Fungal strains isolated from Palmyrah fruit pulp and the soil where pulp is allowed to decay, were grown on naringin agar selective medium at pH 6.0 at room temperature and the production of extracellular naringinase was measured in the liquid fermentation media and solid state fermentation system using paddy husk as support.Results: Five fungal strains isolated from the palmyrah pulp and the pulp decaying in sand designated as PF1,PF2,PF3,PF4 & PF5 had the ability to produce extracellular naringinase enzyme in liquid fermentation media. Fungal strain PF4 that showed highest naringinase enzyme activity (1.769U/ml) was selected among the isolated five fungal strains and identified as Rhizophus stolonifer based on the morphological and biochemical characteristics. When this strain was grown in the solid state fermentation system using paddy husk as media, narininase production was higher (269.84 U/gram of dry substrate) in seven days.Conclusion: Rhizophus stolonifer could be used to produce large scale naringinase enzyme under solid state fermentation system using very cheap, easily available, agricultural waste paddy husk as support without the need of expensive and well equipped laboratories.


Author(s):  
Farhan M. Said ◽  
Nor Farhana Hamid ◽  
Mohamad Al-Aamin Razali ◽  
Nur Fathin Shamirah Daud ◽  
Siti Mahira Ahmad

2018 ◽  
Vol 11 (5) ◽  
pp. 2067-2073 ◽  
Author(s):  
Tasleem Akhtar ◽  
Abu Saeed Hashmi ◽  
Muhammad Tayyab ◽  
Aftab Ahmed Anjum ◽  
Shagufta Saeed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document