scholarly journals Enzyme production by soil filamentous fungi under solid-state fermentation in banana stalk

2018 ◽  
Vol 8 (3) ◽  
pp. 424-431 ◽  
Author(s):  
Fernanda Castro Pires dos Santos ◽  
Joice Raísa Barbosa Cunha ◽  
Fábia Giovana Do val de Assis ◽  
Patrícia Lopes Leal

The adequate disposal of agricultural waste is one of the major concerns of public officials and a research challenge to obtain sustainable solutions to the problem. In this sense, the objective of this study was to evaluate the banana leaf stalk use as substrate in solid-state fermentation (SSF) for production of amylolytic and cellulolytic enzymes by Penicillium spp. LEMI A11 strain grown under different substrate concentrations, pH and temperature. Effects of different pH conditions (5.0 and 6.0), temperature (30 and 35 °C) and substrate concentration 70 and 90% (in relation to the final volume) of the fermentation were evaluated over 120 hours of fermentation. The results indicated that Penicillium spp. LEMI A11 was able to use the banana stalk as substrate under SSF. The maximum activities for amylase dextraining, amylase saccharifying and CMCase were 0.18; 0.13 and 04 U.g-1, respectively. The effect of environmental factors related to the substrate concentration was significant for saccharifying amylase and CMCase activity only. The interaction between the environmental factors tested was significant for the dextrinizing amylase activity only. It was verified enzyme activity reduction after 96 hours of fermentation for all enzymes. It concluded that banana stalk is an alternative carbon source to be used in SSF for enzyme production by of Penicillium spp. LEMI A11.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Moumita Karmakar ◽  
Rina Rani Ray

The production cost of β-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of β-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum β-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Khushal Brijwani ◽  
Praveen V. Vadlani

We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


2013 ◽  
Vol 4 (3) ◽  
pp. 201-209 ◽  
Author(s):  
José Manuel Salgado ◽  
Luís Abrunhosa ◽  
Armando Venâncio ◽  
José Manuel Domínguez ◽  
Isabel Belo

Author(s):  
MARIA ALICE ZARUR COELHO ◽  
SELMA GOMES FERREIRA LEITE ◽  
MORSYLEIDE DE FREITAS ROSA ◽  
ANGELA APARECIDA LEMOS FURTADO

Investigou-se o aproveitamento da casca do coco verde, mediante fermentação semisólida, para produção de enzimas. A casca de coco foi previamente desidratada, moída e classificada em três diferentes granulometrias, ou seja, 14, 28 e 32 mesh Tyler. Todas as enzimas obtidas tiveram sua produção máxima na faixa de 24 e 96 horas, o que corresponde ao tempo de produção industrial corrente. Cada granulometria produziu complexos enzimáticos ricos em diferentes atividades. O estudo realizado validou a hipótese do aproveitamento do resíduo da casca do coco verde na produção de enzimas por Aspergillus niger. Abstract The utilization of immature coconut peel as substrate for enzyme production by solid state fermentation was investigated. The coconut peel was previously dehydrated, milled and classified in three distinct granulometries: 14, 28 and 32 mesh Tyler. All the enzymes obtained had its maximum production in 24 to 96 hour interval, which correspond to the current industrial production time. Each granulometry produced rich enzymatic complexes with different activities. This study validates the hypothesis of benefit immature coconut peel as raw material for enzyme production by Aspergillus niger.


Sign in / Sign up

Export Citation Format

Share Document