fermentation media
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 36)

H-INDEX

31
(FIVE YEARS 3)

2023 ◽  
Vol 83 ◽  
Author(s):  
B. Mazhar ◽  
N. Jahan ◽  
M. Chaudhry ◽  
I. Liaqat ◽  
M. Dar ◽  
...  

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 316
Author(s):  
Xiaoxiao Yan ◽  
Yongdi Wen ◽  
Menghua Hu ◽  
Zhenqiang Wu ◽  
Xiaofei Tian

Hypocrellin is a natural 3,10-xylene-4,9-anthracene derivative compound that originates from the stroma of Shiraia bambusicola (S. bambusicola) and Hypocrella bambusae with excellent photobiological activities. Submerged fermentation with the mycelia of S. bambusicola is generally regarded as an ideal technology for hypocrellin production. This study developed a co-cultivation strategy for an obvious promotion of the hypocrellin yield by incubating S. bambusicola (GDMCC 60438) with the endophyte fungus Arthrinium sp. AF-5 isolated from the bamboo tissue. The results indicated that the yield of hypocrellin A (HA) reached a 66.75 mg/g carbon source after an 84-h co-cultivation of the two strains, which was a four-time increase of that by the fermentation only with the S. bambusicola. The microscope observation found that the mycelia of the two strains were intertwined with each other to form the mycelium pellets during the co-cultivation. Moreover, the mycelium pellets of the co-culture showed a contracted and slightly damaged morphology. The addition of H2O2 in the fermentation media could further increase the HA production by 18.31%.


2021 ◽  
Vol 39 (4) ◽  
pp. 131-137
Author(s):  
Stanton Gill ◽  
Brian Kunkel

Abstract Root mealybug (Rhizoecus sp.) and rice root aphid (Rhopalosiphum rufibdominalis) are below-ground feeding insects that are difficult to control and have become major pests as production of their host plants has grown. Field trials were designed to investigate the impact new insecticides and biopesticides have on root mealybugs and rice root aphids. In our first three trials, we investigated the effects of biopesticides, entomopathogenic nematodes or fungi on reflexed stonecrop (Sedum rupestre) and stonecrop (S. montanum) against root mealybug. We found that flupyradifurone (Altus), flonicamid (Aria), chlorantraniliprole (Acelepryn), pymetrozine (Endeavor), Beauveria bassiana (Mycotrol), Chromobacterium subtsugae (Grandevo), Burkholderia spp. strain A396 (Venerate), cyantraniliprole (Mainspring) and Steinernema carpocapsae (Millenium) significantly reduced root mealybug populations compared to nontreated controls when applied as drenches in a curative manner. In our fourth trial, we evaluated biopesticides and Beauveria bassiana, on rice root aphid feeding on common rush (Juncus effusus) roots. Results showed pymetrozine significantly reduced populations as early as 14 days after treatment and continued to reduce their population throughout the remainder of the trial. However, chlorantraniliprole, cyantraniliprole, Beauveria bassiana, M-306 and MBI-203 did not significantly reduce rice root aphid populations until 28 days after initial application. Predator activity on root balls of Juncus effusus plants was also noted during the trials and may provide an integrated pest management (IPM) approach in controlling populations. Index words: reflexed stonecrop, Sedum rupestre L, stonecrop, Sedum montanum Song. & Perr, common rush, Juncus effuses L, Beauveria bassiana, Mycotrol, Steinernema carpocapsae, Millenium, reduced-risk pesticides, Chromobacterium subtsugae (Grandevo), flupyradifurone, Altus, flonicamid, Aria, chlorantraniliprole, Acelepryn, pymetrozine, Endeavor, Burkholderia spp. strain A396, Venerate, cyantraniliprole, Mainspring, M-306, MBI-203. Chemicals used in this study: flupyradifurone (Altus); flonicamid (Aria); chlorantraniliprole (Acelepryn); cyantraniliprole (Mainspring); pyrometrozine (Endeavor); Burkholderia spp. strain 396 (Venerate); Chromobacterium subtsugae (Grandevo); Beauveria bassiana (Mycotrol); AMBI-203 WDG – 30% Chromobacterium subtsugae strain PRAA4-1T cells and spent fermentation media. EPA registration number 84059-27; MBI-206 EP – 94.46% Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media. EPA registration number 84059-14; MBI-203 SC2 – 98% Chromobacterium subtsugae strain PRAA4-1T cells and spent fermentation media. Experimental; MBI-306 SC1 - 94.46% non-viable Burkholderia spp. strain A396 cells and spent fermentation media. Experimental. Species used in this study: Root mealybug, Rhizoecus sp; Rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki); reflexed stonecrop, Sedum rupestre; stonecrop, Sedum montanum; common rush, Juncus effusus.


Author(s):  
Dennis M. Chioma ◽  
Gideon O. Abu ◽  
Obioma K. Agwa

The disposal and attendant problems associated with agro-wastes have remained a challenge to the environment. Three agricultural wastes (cassava whey, banana peels and groundnut shells) were collected from the Choba and Yam zone markets in Rivers State, Nigeria and screened for their potential as substrates in the formulation of fermentation media to produce oxalic acid. The inoculum for the study was isolated from the banana peels and identified using the megablast search for highly similar sequences from the NCBI non-redundant nucleotide database. The microbial load and proximate composition of the substrates were determined, and the fermentation media formulated. The organism used for the study was identified as Aspergillus niger MW188538. The results showed a total bacterial count of 9.5x104 cfu/ml, 1.87 x 105 cfu/ml, and 4.0 x 104 cfu/g for cassava whey, banana peels and groundnut shell respectively. The carbohydrates of the cassava whey, banana peels and groundnut shells were 67.74 %w/v, 53.24%w/v and 38.8% w/v respectively. After 12 days of fermentation, the substrates from cassava whey, banana peels, groundnut shells accumulated 2.5 ppm, 1.8 ppm and 1.3 ppm of oxalic acid respectively. The study hypothetically indicates that agro-wastes could be utilized as media components for production of industrial organics.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4262
Author(s):  
Rachel Serrano ◽  
Víctor González-Menéndez ◽  
Germán Martínez ◽  
Clara Toro ◽  
Jesús Martín ◽  
...  

Microbial natural products are an invaluable resource for the biotechnological industry. Genome mining studies have highlighted the huge biosynthetic potential of fungi, which is underexploited by standard fermentation conditions. Epigenetic effectors and/or cultivation-based approaches have successfully been applied to activate cryptic biosynthetic pathways in order to produce the chemical diversity suggested in available fungal genomes. The addition of Suberoylanilide Hydroxamic Acid to fermentation processes was evaluated to assess its effect on the metabolomic diversity of a taxonomically diverse fungal population. Here, metabolomic methodologies were implemented to identify changes in secondary metabolite profiles to determine the best fermentation conditions. The results confirmed previously described effects of the epigenetic modifier on the metabolism of a population of 232 wide diverse South Africa fungal strains cultured in different fermentation media where the induction of differential metabolites was observed. Furthermore, one solid-state fermentation (BRFT medium), two classic successful liquid fermentation media (LSFM and YES) and two new liquid media formulations (MCKX and SMK-II) were compared to identify the most productive conditions for the different populations of taxonomic subgroups.


Agro-Science ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 74-80
Author(s):  
F.U. Ugwuona ◽  
N.A. Obeta ◽  
I.S. Asogwa ◽  
T.R. Sabo

Fermentation improves quality of food, and is exploited in processing soymilk powder. Unfortunately, there is no unified fermentation procedure for producing powdered soymilk in Nigeria. A fermentation condition to produce high nutritional and most acceptable powdered soymilk is ideal for Nigerians. This study evaluated the effect fermentation media and time on physicochemical and sensory properties of powdered soymilk. Seven batches (600 g each) of soybean seeds were fermented, the first three in neutral water, sample A for 4 h, B for 16 h in the same water, and C for 16 h but changing the water every 4 h. The next two were fermented in alkaline solution for 16 h, D in the same water, and E with changing the water every 4 h. The last two were fermented for 16 h in acidic solution, Fin the same solution and G with changing the water every 4 h. The beans were processed into cooked soy flour and analyzed for physicochemical and sensory properties. Fermentation enhanced better quality than soaking; fermentation time and medium pH significantly (p < 0.05) induced variations in quality of the powder. Soaking produced soy powder with highest carbohydrate (44.47 %) and fibre (1.355%) but significantly (p < 0.05) low in protein, minerals and crude fat. Continuous 16-h fermentation in the same medium produced soy powders with lowestphytochemical contents. Soaked (4 h) soybean in neutral water (A) produced powder with 39.50% protein, 44.47% carbohydrates, 1.35% fibre, 5.58% fat and 2.75% ash while continuous fermentation for 16 h in the same water produced powder (B) with 42.47% protein, 41.71% carbohydrate, 1.22% fibre, 5.81% fat and 2.42% ash. Continuous 16-h fermentation was better than changing the medium; and neutral medium was better than acidic and alkaline medium. All the soy powder high sensory scores (≥ 5) and were acceptable to the panelists. Thus, 16-h continuous fermentation in neutral medium was more cost effective and produced soybean powder of better quality than fermenting in alkaline and acidic media. Key words: fermentation time, quality, soaking media, soybean powders


2021 ◽  
Vol 23 (1) ◽  
pp. 71-77
Author(s):  
Near Putri Faradila Ayu ◽  
N Nurhayati ◽  
Ahmad Thontowi ◽  
Endang Kusdiyantini ◽  
Atit Kanti ◽  
...  

Xylitol (C5H12O5) is a non-carcinogenic polyalcoholic sugar. Xylitol is beneficial for diabetics because it can be metabolized without insulin. Corn cobs contain 30% xylose which can be fermented into xylitol by microorganisms. Xylitol can be produced by fermentation of xylose and few microorganisms. Meyerozyma caribbica is a yeast that has been proven to produce xylitol and inhibitor’s resistant. The aim of this research is to test the xylitol productivity by Meyerozyma caribbica InaCC Y67 using corn cobs hydrolyzate and the effect of the volume of fermentation media on xylitol productivity by Meyerozyma caribbica InaCC Y67. The method was carried out by culturing Meyerozyma caribbica InaCC Y67 as a starter on YPD media.  Fermentation using 100 mL Erlenmeyer with the variation of fermentation volume is 10 ml and 75 ml, agitation 175 rpm and 30 oC. Parameters were measured based on the dry weight of cells, xylose and xylitol. Data were analyzed using fermentation kinetics. The results of analysis showed that the higher xylitol production was found in the fermentation volume 75 ml with an efficiency value of 7,171%. The highest xylitol production was at the 48th hour with production value of 2.050 g/L. Results from research shows that Meyerozyma caribbica InaCC Y67 can produce xylitol with corn cobs hydrolyzate. The right volume of fermentation in the fermentation process can also increase the productivity of xylitol.


2021 ◽  
Vol 13 (10) ◽  
pp. 5499
Author(s):  
Manuel García ◽  
Paula Oulego ◽  
Mario Díaz ◽  
Sergio Collado

Hydrolysis and the solubilization of sewage sludge processes are important tools to obtain small and medium molecules with different application perspectives. Although the production of biomethane and other products such as biohydrogen from sludge as biofuel alternatives has been profusely studied, the current perspectives are mainly focused on the use of the sludge hydrolysate to produce non-energy bioproducts and biomaterials. In this review, the most recent bibliography dealing with the use of sludge hydrolysates as fermentation media for the bioproduction of new non-energetic products with industrial interest is here revised and discussed. In this regard, the main research effort has been focused on the bioproduction of short-chain fatty acids due to their direct use in industrial applications or as a carbon source for polyhydroxyalkanoates-producing microorganisms. The use of sludge hydrolysates as fermentation media using pure cultures to produce more complex biomolecules, such as enzymes or lipids, is gaining interest, but it remains an undervalued topic. The literature has been divided into processes where hydrolysis and fermentation stages took place simultaneously or separately, centering them on the effect of the main operational conditions on the yields and properties of the corresponding metabolites produced. In general, the main limiting step of these kinds of processes is the proper solubilization and hydrolysis of the sludge, which can improve the bioassimilation of nutrients and, subsequently, the productivities and compositions of the metabolites obtained. Biological and/or thermal pretreaments are the options more profusely employed, which are frequently assisted by different promoters such as oxidants, surfactants, or cation exchange resins.


Sign in / Sign up

Export Citation Format

Share Document