Compact Diversity Mimo Antenna for Satellite Communication

2020 ◽  
Author(s):  
G Roopa ◽  
Krishna Chandra ◽  
B Raghavulu ◽  
Md Ismail ◽  
M Kumar Aditya
2018 ◽  
Vol 10 (8) ◽  
pp. 948-955 ◽  
Author(s):  
Ling Wu ◽  
Yingqing Xia ◽  
Xia Cao ◽  
Zhengtao Xu

AbstractA simple multiple-input-multiple-output (MIMO) antenna with quad-band-notched characteristics for ultra-wideband (UWB) system is proposed and tested in the article. Based on two similar radiators, the UWB-MIMO system only occupies 22 mm × 28 mm. By etching an inverted L-like meander slot, two inverted L-shaped slots, and adding a C-shaped stub beside the feeding line, four notched bands are realized (3.25–3.6, 5.05–5.48, 5.6–6, and 7.8–8.4 GHz) to suppress interference from WiMAX, lower WLAN, upper WLAN, and uplink of X-band satellite communication system. With a T-like stub extruding from the ground plane, port isolation is effectively improved. The results show that the antenna covers 3.1–10.6 GHz UWB frequency band except four rejected bands and has high isolation of better than −20 dB over most of the frequency band. Moreover, envelope correlation coefficient and good radiation patterns also prove that the introduced antenna is suitable for UWB applications.


Author(s):  
D S Ramkiran ◽  
B T P Madhav ◽  
Kankara Narasimha Reddy ◽  
Shaik Shabbeer ◽  
Priyanshi Jain ◽  
...  

A coplanar wave guide fed of semicircle monopole antenna is designed in this work to overcome polarization diversity mimo technique is implemented in this paper. The proposed antenna is designed to notch a particular band of frequencies in UWB range. The designed model is notching the first band from 2 to 5 GHz & the second band from 7 to 11 GHz. The proposed antenna has been fabricated on FR4 substrate with di electric constant 4.4 & tested for its reliability on ZNB20 vector network analyzer. The operating bands will come under WLAN, KU band, satellite communication applications. A peak realized gain of 4.3 dB with radiation efficiency 90% is attained at the operating bands of the designed antenna. At notch band significant gain reduction is observed from the current design. The antenna is showing omnidirectional radiation pattern in the pass band & disturbed radiation pattern in the notch band. Antenna is fabricated with dimensions of 40x68x1.6 mm & simulation works are carried with finite element method based HFSS tool.


2021 ◽  
Vol 117 ◽  
pp. 99-114
Author(s):  
Kommana Vasu Babu ◽  
Sudipta Das ◽  
Soufian Lakrit ◽  
Shobhitkumar Kiritkumar Patel ◽  
Boddapati Taraka Phaneendra Madhav ◽  
...  

2021 ◽  
Author(s):  
Swati Bhattacharjee ◽  
Santimoy Mandal ◽  
Chandan Kumar Ghosh

Abstract For closely spaced microstrip antenna elements, Mutual Coupling (MC) is an inevitable phenomenon which degrades antenna performances like gain, radiation pattern, return loss, radiation efficiency etc. Lot of works have been done on the reduction of MC and published the results in the open literatures. This paper presents an approach to suppress MC between two closely spaced microstrip radiators. This is achieved by inserting properly designed EMSS structure between the radiating elements. This EMSS acts as an electrical wall between two rectangular patches and reduces mutual coupling up to 50 dB at resonance frequency of 4.35 GHz. In this attempt, Cross Polarization (XP) reduction of 12.5dB has also been achieved with a gain 5.40dBi for the proposed antenna. The centre to centre spacing between the antenna elements is taken as 22.1mm (0.32λ).The proposed MIMO antenna system can be used for satellite communication and radar system.


Author(s):  
D S Ramkiran ◽  
B T P Madhav ◽  
Kankara Narasimha Reddy ◽  
Shaik Shabbeer ◽  
Priyanshi Jain ◽  
...  

A coplanar wave guide fed of semicircle monopole antenna is designed in this work to overcome polarization diversity mimo technique is implemented in this paper. The proposed antenna is designed to notch a particular band of frequencies in UWB range. The designed model is notching the first band from 2 to 5 GHz & the second band from 7 to 11 GHz. The proposed antenna has been fabricated on FR4 substrate with di electric constant 4.4 & tested for its reliability on ZNB20 vector network analyzer. The operating bands will come under WLAN, KU band, satellite communication applications. A peak realized gain of 4.3 dB with radiation efficiency 90% is attained at the operating bands of the designed antenna. At notch band significant gain reduction is observed from the current design. The antenna is showing omnidirectional radiation pattern in the pass band & disturbed radiation pattern in the notch band. Antenna is fabricated with dimensions of 40x68x1.6 mm & simulation works are carried with finite element method based HFSS tool.


Author(s):  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim ◽  
Josaphat Tetuko Sri Sumantyo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document