scholarly journals Data (R)Evolution – The Economics of Algorithmic Search and Recommender Services

2021 ◽  
Author(s):  
Oliver Budzinski ◽  
Sophia Gaenssle ◽  
Nadine Lindstädt
Keyword(s):  
1980 ◽  
Vol 13 (4) ◽  
pp. 423-435 ◽  
Author(s):  
Laurence A. Madeo ◽  
Thomas J. Schriber

2019 ◽  
Vol 625 ◽  
pp. A56 ◽  
Author(s):  
Romain A. Meyer ◽  
Timothée Delubac ◽  
Jean-Paul Kneib ◽  
Frédéric Courbin

We present a sample of 12 quasi-stellar objects (QSOs) that potentially act as strong gravitational lenses on background emission line galaxies (ELG) or Lyman-α emitters (LAEs) selected through a systematic search of the 297 301 QSOs in the Sloan Digital Sky Survey (SDSS)-III Data Release 12. Candidates were identified by looking for compound spectra, where emission lines at a redshift larger than that of the quasar can be identified in the residuals after a QSO spectral template is subtracted from the observed spectra. The narrow diameter of BOSS fibers (2″) then ensures that the object responsible for the additional emission lines must lie close to the line of sight of the QSO and hence provides a high probability of lensing. Among the 12 candidates identified, nine have definite evidence for the presence of a background ELG identified by at least four higher-redshift nebular emission lines. The remaining three probable candidates present a strong asymmetrical emission line attributed to a background Lyman-α emitter (LAE). The QSO-ELG (QSO-LAE) lens candidates have QSO lens redshifts in the range 0.24 ≲ zQSO ≲ 0.66 (0.75 ≲ zQSO ≲ 1.23 ) and background galaxy redshifts in the range 0.48 ≲ zS, ELG ≲ 0.94 (2.17 ≲ zS, LAE ≲ 4.48). We show that the algorithmic search is complete at > 90% for QSO-ELG systems, whereas it falls at 40−60% for QSO-LAE, depending on the redshift of the source. Upon confirmation of the lensing nature of the systems, this sample may quadruple the number of known QSOs acting as strong lenses. We have determined the completeness of our search, which allows future studies to compute lensing probabilities of galaxies by QSOs and differentiate between different QSO models. Future imaging of the full sample and lens modelling offers a unique approach to study and constrain key properties of QSOs.


Author(s):  
Benjamin Russell ◽  
Herschel Rabitz

A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue ‘Horizons of cybernetical physics’.


1981 ◽  
Vol 15 (12) ◽  
pp. 870-876
Author(s):  
L. A. Tyurina ◽  
V. A. Semenov ◽  
M. P. Nemeryuk ◽  
A. F. Keremov ◽  
N. A. Ryabokon' ◽  
...  

2020 ◽  
Vol 545 ◽  
pp. 237-244 ◽  
Author(s):  
Robert Gilman

1989 ◽  
Vol 23 (3) ◽  
pp. 244-248
Author(s):  
S. K. Kotovskaya ◽  
L. A. Tyurina ◽  
E. Yu. Chernova ◽  
G. A. Mokrushina ◽  
O. N. Chupakhin ◽  
...  

Author(s):  
Daniel Grande ◽  
Felice Mancini ◽  
Pradeep Radhakrishnan

This paper presents a graph grammar based automated tool that can generate bond graphs of various systems for dynamic analysis. A generic graph grammar based representation scheme has been developed for different system components and bond graph elements. Using that representation, grammar rules have been developed that enable interpreting a given system and generating bond graph through an algorithmic search process. Besides, the paper also demonstrates the utility of the proposed tool in classrooms to enhance value in bond graph based system dynamics education. The underlying technique, various examples and benefits of this automated tool will be highlighted.


2021 ◽  
Author(s):  
Tarek Jabri ◽  
Jason N MacLean

Complex systems can be defined by "sloppy" dimensions, meaning that their behavior is unmodified by large changes to specific parameter combinations, and "stiff" dimensions whose changes result in considerable modifications. In the case of the neocortex, sloppiness in synaptic architectures would be crucial to allow for the maintenance of spiking dynamics in the normal range despite a diversity of inputs and both short- and long-term changes to connectivity. Using simulations on neural networks with spiking matched to murine visual cortex, we determined the stiff and sloppy parameters of synaptic architectures across three classes of input (brief, continuous, and cyclical). Large-scale algorithmically-generated connectivity parameter values revealed that specific combinations of excitatory and inhibitory connectivity are stiff and that all other architectural details are sloppy. Stiff dimensions are consistent across a range of different input classes with self-sustaining synaptic architectures occupying a smaller subspace as compared to the other input classes. We also find that experimentally estimated connectivity probabilities from mouse visual cortex are similarly stiff and sloppy when compared to the architectures that we identified algorithmically. This suggests that simple statistical descriptions of spiking dynamics are a sufficient and parsimonious description of neocortical activity when examining structure-function relationships at the mesoscopic scale. Moreover, this study provides further evidence of the importance of the interrelationship of excitatory and inhibitory connectivity to establish and maintain stable spiking dynamical regimes in neocortex.


Sign in / Sign up

Export Citation Format

Share Document