Dynamic Portfolio Management with Machine Learning

2021 ◽  
Author(s):  
XINYU HUANG ◽  
Massimo Guidolin ◽  
Emmanouil Platanakis ◽  
David Newton
2021 ◽  
Vol 12 (4) ◽  
pp. 43
Author(s):  
Srikrishna Chintalapati

From retail banking to corporate banking, from property and casualty to personal lines, and from portfolio management to trade processing, the next wave of digital disruption in financial services has been unleashed by the concepts and applications of Artificial Intelligence (AI) and Machine Learning (ML). Together, AI and ML are undoubtedly creating one of the largest technological transformations the world has ever witnessed. Within the advanced streams of research in AI and ML, human intelligence blended with the cognitive reasoning of machines is finally out of the labs and into real-time applications. The Financial Services sector is one of the early adopters of this revolution and arguably much ahead of its leverage compared to other sectors. Built on the conceptual foundations of Innovation diffusion, and a contemporary perspective of enterprise customer life-cycle journey across the AI-value chain defined by McKinsey Global Institute (2017), the current study attempts to highlight the features and use-cases of early-adopters of this transformation. With the theoretical underpinning of technology adoption lifecycle, this paper is an earnest attempt to comment on how AI and ML have been significantly transforming the Financial Services market space from the lens of a domain practitioner. The findings of this study would be of particular relevance to the subject matter experts, Industry analysts, academicians, and researchers focussed on studying the impact of AI and ML in the financial services industry.


2019 ◽  
Vol 22 (03) ◽  
pp. 1950021 ◽  
Author(s):  
Huei-Wen Teng ◽  
Michael Lee

Machine learning has successful applications in credit risk management, portfolio management, automatic trading, and fraud detection, to name a few, in the domain of finance technology. Reformulating and solving these topics adequately and accurately is problem specific and challenging along with the availability of complex and voluminous data. In credit risk management, one major problem is to predict the default of credit card holders using real dataset. We review five machine learning methods: the [Formula: see text]-nearest neighbors decision trees, boosting, support vector machine, and neural networks, and apply them to the above problem. In addition, we give explicit Python scripts to conduct analysis using a dataset of 29,999 instances with 23 features collected from a major bank in Taiwan, downloadable in the UC Irvine Machine Learning Repository. We show that the decision tree performs best among others in terms of validation curves.


2020 ◽  
Vol 32 (23) ◽  
pp. 17229-17244
Author(s):  
Giorgio Lucarelli ◽  
Matteo Borrotti

AbstractDeep reinforcement learning is gaining popularity in many different fields. An interesting sector is related to the definition of dynamic decision-making systems. A possible example is dynamic portfolio optimization, where an agent has to continuously reallocate an amount of fund into a number of different financial assets with the final goal of maximizing return and minimizing risk. In this work, a novel deep Q-learning portfolio management framework is proposed. The framework is composed by two elements: a set of local agents that learn assets behaviours and a global agent that describes the global reward function. The framework is tested on a crypto portfolio composed by four cryptocurrencies. Based on our results, the deep reinforcement portfolio management framework has proven to be a promising approach for dynamic portfolio optimization.


Sign in / Sign up

Export Citation Format

Share Document