Hospitalisations and Morbidities after Traumatic Brain Injury in Children: A Nation-Wide Population-Based Analysis of German Hospital Data

2021 ◽  
Author(s):  
Nora Bruns ◽  
Pietro Trocchi ◽  
Ursula Felderhoff-Müser ◽  
Christian Dohna-Schwake ◽  
Andreas Stang
2021 ◽  
Vol 9 ◽  
Author(s):  
Nora Bruns ◽  
Pietro Trocchi ◽  
Ursula Felderhoff-Müser ◽  
Christian Dohna-Schwake ◽  
Andreas Stang

Background: Even though traumatic brain injury (TBI) is a major cause of morbidity and mortality in children around the globe, population-based and nation-wide data to assess the burden of TBI is scarce.Methods:Based on diagnosis related groups from nation-wide hospital data, we extracted data on all TBI-related hospitalizations in children <18 years in Germany between 2014 and 2018. We calculated crude, age-specific and standardized incidence rates for hospitalizations, imaging, intracranial injury, neurosurgery, and mortality.Results:Out of 10.2 million hospitalizations, we identified 458,844 cases with TBI as primary or secondary diagnosis, resulting in a crude incidence rate of 687/100,000 child years (CY). Age-specific rates of computed tomography were below 30/100,000 CY until the age of 10 years and increased to 162/100,000 CY until 17 years of age. Intracranial injury was diagnosed in 2.7%, neurosurgery was performed in 0.7% of patients, and 0.7% were mechanically ventilated. Mortality was 0.67/100,000 CY (0.1%).Conclusions:Despite substantial hospitalization rates for pediatric TBI in Germany, the rates of imaging, the need for mechanical ventilation, neurosurgery and mortality were overall very low. Reasons for hospitalization and measures to reduce unnecessary admissions warrant further investigation.


2020 ◽  
pp. 1-10
Author(s):  
Brittany M. Stopa ◽  
Maya Harary ◽  
Ray Jhun ◽  
Arun Job ◽  
Saef Izzy ◽  
...  

OBJECTIVETraumatic brain injury (TBI) is a leading cause of morbidity and mortality in the US, but the true incidence of TBI is unknown.METHODSThe National Trauma Data Bank National Sample Program (NTDB NSP) was queried for 2007 and 2013, and population-based weighted estimates of TBI-related emergency department (ED) visits, hospitalizations, and deaths were calculated. These data were compared to the 2017 Centers for Disease Control and Prevention (CDC) report on TBI, which used the Healthcare Cost and Utilization Project’s National (“Nationwide” before 2012) Inpatient Sample and National Emergency Department Sample.RESULTSIn the NTDB NSP the incidence of TBI-related ED visits was 59/100,000 in 2007 and 62/100,000 in 2013. However, in the CDC report there were 534/100,000 in 2007 and 787/100,000 in 2013. The CDC estimate for ED visits was 805% higher in 2007 and 1169% higher in 2013. In the NTDB NSP, the incidence of TBI-related deaths was 5/100,000 in 2007 and 4/100,000 in 2013. In the CDC report, the incidence was 18/100,000 in both years. The CDC estimate for deaths was 260% higher in 2007 and 325% higher in 2013.CONCLUSIONSThe databases disagreed widely in their weighted estimates of TBI incidence: CDC estimates were consistently higher than NTDB NSP estimates, by an average of 448%. Although such a discrepancy may be intuitive, this is the first study to quantify the magnitude of disagreement between these databases. Given that research, funding, and policy decisions are made based on these estimates, there is a need for a more accurate estimate of the true national incidence of TBI.


2021 ◽  
Vol 92 (5) ◽  
pp. 519-527
Author(s):  
Yasmina Molero ◽  
David James Sharp ◽  
Brian Matthew D'Onofrio ◽  
Henrik Larsson ◽  
Seena Fazel

ObjectiveTo examine psychotropic and pain medication use in a population-based cohort of individuals with traumatic brain injury (TBI), and compare them with controls from similar backgrounds.MethodsWe assessed Swedish nationwide registers to include all individuals diagnosed with incident TBI between 2006 and 2012 in hospitals or specialist outpatient care. Full siblings never diagnosed with TBI acted as controls. We examined dispensed prescriptions for psychotropic and pain medications for the 12 months before and after the TBI.ResultsWe identified 239 425 individuals with incident TBI, and 199 658 unaffected sibling controls. In the TBI cohort, 36.6% had collected at least one prescription for a psychotropic or pain medication in the 12 months before the TBI. In the 12 months after, medication use increased to 45.0%, an absolute rate increase of 8.4% (p<0.001). The largest post-TBI increases were found for opioids (from 16.3% to 21.6%, p<0.001), and non-opioid pain medications (from 20.3% to 26.6%, p<0.001). The majority of prescriptions were short-term; 20.6% of those prescribed opioids and 37.3% of those with benzodiazepines collected prescriptions for more than 6 months. Increased odds of any psychotropic or pain medication were associated with individuals before (OR: 1.62, 95% CI: 1.59 to 1.65), and after the TBI (OR: 2.30, 95% CI: 2.26 to 2.34) as compared with sibling controls, and ORs were consistently increased for all medication classes.ConclusionHigh rates of psychotropic and pain medications after a TBI suggest that medical follow-up should be routine and review medication use.


2018 ◽  
Vol 5 (5) ◽  
pp. 424-431 ◽  
Author(s):  
Jesse R Fann ◽  
Anette Riisgaard Ribe ◽  
Henrik Schou Pedersen ◽  
Morten Fenger-Grøn ◽  
Jakob Christensen ◽  
...  

2016 ◽  
Vol 47 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Gordon W. Fuller ◽  
Jeanine Ransom ◽  
Jay Mandrekar ◽  
Allen W. Brown

Background: Long-term mortality may be increased following traumatic brain injury (TBI); however, the degree to which survival could be reduced is unknown. We aimed at modelling life expectancy following post-acute TBI to provide predictions of longevity and quantify differences in survivorship with the general population. Methods: A population-based retrospective cohort study using data from the Rochester Epidemiology Project (REP) was performed. A random sample of patients from Olmsted County, Minnesota with a confirmed TBI between 1987 and 2000 was identified and vital status determined in 2013. Parametric survival modelling was then used to develop a model to predict life expectancy following TBI conditional on age at injury. Survivorship following TBI was also compared with the general population and age- and gender-matched non-head injured REP controls. Results: Seven hundred and sixty nine patients were included in complete case analyses. The median follow-up time was 16.1 years (interquartile range 9.0-20.4) with 120 deaths occurring in the cohort during the study period. Survival after acute TBI was well represented by a Gompertz distribution. Victims of TBI surviving for at least 6 months post-injury demonstrated a much higher ongoing mortality rate compared to the US general population and non-TBI controls (hazard ratio 1.47, 95% CI 1.15-1.87). US general population cohort life table data was used to update the Gompertz model's shape and scale parameters to account for cohort effects and allow prediction of life expectancy in contemporary TBI. Conclusions: Survivors of TBI have decreased life expectancy compared to the general population. This may be secondary to the head injury itself or result from patient characteristics associated with both the propensity for TBI and increased early mortality. Post-TBI life expectancy estimates may be useful to guide prognosis, in public health planning, for actuarial applications and in the extrapolation of outcomes for TBI economic models.


Sign in / Sign up

Export Citation Format

Share Document