Study and Prototype Implementation of Basic Non-CAN and CAN Based Communication in Context with Automotive Application(s)

2021 ◽  
Author(s):  
Umesh Pawar ◽  
Sunil Bhirud ◽  
Satish R. Kolhe
2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Syamsul Rizal ◽  
Amin Suhandi

There are many attempts to support the development of industry in Indonesia, especially on automotive sector, one of them is by replacing import components with local component products. Bushing is one of imported component that widely used on automotive application including motor strater. Bushing usually made of  copper alloy such as brass, bronz or babbit in a solid form by casting or extrusion process. In this research powder metal technology is used to process Cu-Al powder to become slide bearing of motor starter. It is expected that powder metal process not only increasing local content in automotive parts but also providing better quality by increasing life time of bushing compared to ordinary one. Cu-Al metal powder was compacted at various pressure, i.e: 250 MPa, 350 MPa and 450 MPa, and then all specimens were sintered at different temperatures : 4000C, 5000C dan 6000C for 1 hour.  After sintering specimens were air cooled to room temperature. After physical and mechanical test it can be deduced that bushing made by powder metallurgy method could increase its mechanical properties and as aresult improve its life time operation.  


2020 ◽  
Author(s):  
S. Lakshmi Sankar ◽  
Arun Kumar Gopal ◽  
P. Kuppusami ◽  
A. Amala Mithin Minther Singh ◽  
M. Prabhu ◽  
...  

2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Jeffery M. Allen ◽  
Justin Chang ◽  
Francois L. E. Usseglio-Viretta ◽  
Peter Graf ◽  
Kandler Smith

AbstractBattery performance is strongly correlated with electrode microstructure. Electrode materials for lithium-ion batteries have complex microstructure geometries that require millions of degrees of freedom to solve the electrochemical system at the microstructure scale. A fast-iterative solver with an appropriate preconditioner is then required to simulate large representative volume in a reasonable time. In this work, a finite element electrochemical model is developed to resolve the concentration and potential within the electrode active materials and the electrolyte domains at the microstructure scale, with an emphasis on numerical stability and scaling performances. The block Gauss-Seidel (BGS) numerical method is implemented because the system of equations within the electrodes is coupled only through the nonlinear Butler–Volmer equation, which governs the electrochemical reaction at the interface between the domains. The best solution strategy found in this work consists of splitting the system into two blocks—one for the concentration and one for the potential field—and then performing block generalized minimal residual preconditioned with algebraic multigrid, using the FEniCS and the Portable, Extensible Toolkit for Scientific Computation libraries. Significant improvements in terms of time to solution (six times faster) and memory usage (halving) are achieved compared with the MUltifrontal Massively Parallel sparse direct Solver. Additionally, BGS experiences decent strong parallel scaling within the electrode domains. Last, the system of equations is modified to specifically address numerical instability induced by electrolyte depletion, which is particularly valuable for simulating fast-charge scenarios relevant for automotive application.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1265
Author(s):  
Zhang Chen ◽  
Yanlin He ◽  
Weisen Zheng ◽  
Hua Wang ◽  
Yu Zhang ◽  
...  

A medium manganese steel with 7.5 wt.% Mn for automobile application was galvanized in a continuous Hot Dip Galvanizing (HDG) simulator under different galvanizing conditions. It was shown that the effects of dew point, annealing temperature and annealing atmosphere on the surface oxidation of steel could be comprehensively evaluated by the consideration of oxygen partial pressure P(O2). Although Mn2SiO4 was a thermodynamic stable phase when P(O2) varied from 10−28 to 10−21 atm, it was difficult to form Mn–Si–O composite oxide because there was no enrichment of silicon on the steel surface. So, this oxide was generally formed in the Fe substrate and had little effect on the galvanizability. With the increase in P(O2) above 10−25 atm, MnO particles in the form of the thermodynamic stable phase became coarser and tended to aggregate, which hindered the formation of a continuous inhibition layer, resulting in the defects of bare spots on the galvanized surface of the steel. When the oxygen partial pressure greater than 10−22 atm, film-like MnO layer was formed on the surface of steel sample, which obviously deteriorated the galvanizability. The galvanizability of the steel can be improved by the regulation of oxygen partial pressure; based on this, the reasonable zinc plating process parameters can be developed.


2021 ◽  
Vol 1 (2) ◽  
pp. 340-364
Author(s):  
Rui Araújo ◽  
António Pinto

Along with the use of cloud-based services, infrastructure, and storage, the use of application logs in business critical applications is a standard practice. Application logs must be stored in an accessible manner in order to be used whenever needed. The debugging of these applications is a common situation where such access is required. Frequently, part of the information contained in logs records is sensitive. In this paper, we evaluate the possibility of storing critical logs in a remote storage while maintaining its confidentiality and server-side search capabilities. To the best of our knowledge, the designed search algorithm is the first to support full Boolean searches combined with field searching and nested queries. We demonstrate its feasibility and timely operation with a prototype implementation that never requires access, by the storage provider, to plain text information. Our solution was able to perform search and decryption operations at a rate of, approximately, 0.05 ms per line. A comparison with the related work allows us to demonstrate its feasibility and conclude that our solution is also the fastest one in indexing operations, the most frequent operations performed.


Author(s):  
Soumyajit Das ◽  
Mantra Prasad Satpathy ◽  
Bharat Chandra Routara ◽  
Susanta Kumar Sahoo

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Takumasa Ishioka ◽  
Kazuki Aiura ◽  
Ryota Shiina ◽  
Tatsuya Fukui ◽  
Tomohiro Taniguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document