Journal of Cybersecurity and Privacy
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 37)

H-INDEX

0
(FIVE YEARS 0)

Published By Mdpi Ag

2624-800x

2021 ◽  
Vol 1 (4) ◽  
pp. 804-832
Author(s):  
Shadi Sadeghpour ◽  
Natalija Vlajic

Over the last two decades, we have witnessed a fundamental transformation of the advertising industry, which has been steadily moving away from the traditional advertising mediums, such as television or direct marketing, towards digital-centric and internet-based platforms. Unfortunately, due to its large-scale adoption and significant revenue potential, digital advertising has become a very attractive and frequent target for numerous cybercriminal groups. The goal of this study is to provide a consolidated view of different categories of threats in the online advertising ecosystems. We begin by introducing the main elements of an online ad platform and its different architecture and revenue models. We then review different categories of ad fraud and present a taxonomy of known attacks on an online advertising system. Finally, we provide a comprehensive overview of methods and techniques for the detection and prevention of fraudulent practices within those system—both from the scientific as well as the industry perspective. The main novelty of our work lies in the development of an innovative taxonomy of different types of digital advertising fraud based on their actual executors and victims. We have placed different advertising fraud scenarios into real-world context and provided illustrative examples thereby offering an important practical perspective that is very much missing in the current literature.


2021 ◽  
Vol 1 (4) ◽  
pp. 793-803
Author(s):  
Paul M. Simon ◽  
Scott Graham

Rarely are communications networks point-to-point. In most cases, transceiver relay stations exist between transmitter and receiver end-points. These relay stations, while essential for controlling cost and adding flexibility to network architectures, reduce the overall security of the respective network. In an effort to quantify that reduction, we extend the Quality of Secure Service (QoSS) model to these complex networks, specifically multi-hop networks. In this approach, the quantification of security is based upon probabilities that adversarial listeners and disruptors gain access to or manipulate transmitted data on one or more of these multi-hop channels. Message fragmentation and duplication across available channels provides a security performance trade-space, with its consequent QoSS. This work explores that trade-space and the corresponding QoSS model to describe it.


2021 ◽  
Vol 1 (4) ◽  
pp. 767-792
Author(s):  
Ravi Chauhan ◽  
Ulya Sabeel ◽  
Alireza Izaddoost ◽  
Shahram Shah Heydari

Intrusion Detection Systems (IDS) are essential components in preventing malicious traffic from penetrating networks and systems. Recently, these systems have been enhancing their detection ability using machine learning algorithms. This development also forces attackers to look for new methods for evading these advanced Intrusion Detection Systemss. Polymorphic attacks are among potential candidates that can bypass the pattern matching detection systems. To alleviate the danger of polymorphic attacks, the IDS must be trained with datasets that include these attacks. Generative Adversarial Network (GAN) is a method proven in generating adversarial data in the domain of multimedia processing, text, and voice, and can produce a high volume of test data that is indistinguishable from the original training data. In this paper, we propose a model to generate adversarial attacks using Wasserstein GAN (WGAN). The attack data synthesized using the proposed model can be used to train an IDS. To evaluate the trained IDS, we study several techniques for updating the attack feature profile for the generation of polymorphic data. Our results show that by continuously changing the attack profiles, defensive systems that use incremental learning will still be vulnerable to new attacks; meanwhile, their detection rates improve incrementally until the polymorphic attack exhausts its profile variables.


2021 ◽  
Vol 1 (4) ◽  
pp. 743-766
Author(s):  
Andreas Skalkos ◽  
Ioannis Stylios ◽  
Maria Karyda ◽  
Spyros Kokolakis

Smartphone user authentication based on passwords, PINs, and touch patterns raises several security concerns. Behavioral Biometrics Continuous Authentication (BBCA) technologies provide a promising solution which can increase smartphone security and mitigate users’ concerns. Until now, research in BBCA technologies has mainly focused on developing novel behavioral biometrics continuous authentication systems and their technical characteristics, overlooking users’ attitudes towards BBCA. To address this gap, we conducted a study grounded on a model that integrates users’ privacy concerns, trust in technology, and innovativeness with Protection Motivation Theory. A cross-sectional survey among 778 smartphone users was conducted via Amazon Mechanical Turk (MTurk) to explore the factors which can predict users’ intention to use BBCA technologies. Our findings demonstrate that privacy concerns towards intention to use BBCA technology have a significant impact on all components of PMT. Further to this, another important construct we identified that affects the usage intention of BBCA technology is innovativeness. Our findings posit the view that reliability and trustworthiness of security technologies, such as BBCA are important for users. Together, these results highlighted the importance of addressing users’ perceptions regarding BBCA technology.


2021 ◽  
Vol 1 (4) ◽  
pp. 704-743
Author(s):  
Moses Ashawa ◽  
Sarah Morris

The evolution of mobile technology has increased correspondingly with the number of attacks on mobile devices. Malware attack on mobile devices is one of the top security challenges the mobile community faces daily. While malware classification and detection tools are being developed to fight malware infection, hackers keep deploying different infection strategies, including permissions usage. Among mobile platforms, Android is the most targeted by malware because of its open OS and popularity. Permissions is one of the major security techniques used by Android and other mobile platforms to control device resources and enhance access control. In this study, we used the t-Distribution stochastic neighbor embedding (t-SNE) and Self-Organizing Map techniques to produce a visualization method using exploratory factor plane analysis to visualize permissions correlation in Android applications. Two categories of datasets were used for this study: the benign and malicious datasets. Dataset was obtained from Contagio, VirusShare, VirusTotal, and Androzoo repositories. A total of 12,267 malicious and 10,837 benign applications with different categories were used. We demonstrate that our method can identify the correlation between permissions and classify Android applications based on their protection and threat level. Our results show that every permission has a threat level. This signifies those permissions with the same protection level have the same threat level.


2021 ◽  
Vol 1 (4) ◽  
pp. 675-704
Author(s):  
Tim Smit ◽  
Max van Haastrecht ◽  
Marco Spruit

Human failure is a primary contributor to successful cyber attacks. For any cybersecurity initiative, it is therefore vital to motivate individuals to implement secure behavior. Research using protection motivation theory (PMT) has given insights into what motivates people to safeguard themselves in cyberspace. Recent PMT results have highlighted the central role of the coping appraisal in the cybersecurity context. In cybersecurity, we cope with threats using countermeasures. Research has shown that countermeasure awareness is a significant antecedent to all coping appraisal elements. Yet, although awareness plays a key role within the PMT framework, it is generally challenging to influence. A factor that is easy to influence is countermeasure readability. Earlier work has shown the impact of readability on understanding and that readability metrics make measuring and improving readability simple. Therefore, our research aims to clarify the relationship between countermeasure readability and security intentions. We propose an extended theoretical framework and investigate its implications using a survey. In line with related studies, results indicate that people are more likely to have favorable security intentions if they are aware of countermeasures and are confident in their ability to implement them. Crucially, the data show that countermeasure readability influences security intentions. Our results imply that cybersecurity professionals can utilize readability metrics to assess and improve the readability of countermeasure texts, providing an actionable avenue towards influencing security intentions.


2021 ◽  
Vol 1 (4) ◽  
pp. 660-674
Author(s):  
Anthony Overmars ◽  
Sitalakshmi Venkatraman

Semi-prime factorization is an increasingly important number theoretic problem, since it is computationally intractable. Further, this property has been applied in public-key cryptography, such as the Rivest–Shamir–Adleman (RSA) encryption systems for secure digital communications. Hence, alternate approaches to solve the semi-prime factorization problem are proposed. Recently, Pythagorean tuples to factor semi-primes have been explored to consider Fermat’s Christmas theorem, with the two squares having opposite parity. This paper is motivated by the property that the integer separating these two squares being odd reduces the search for semi-prime factorization by half. In this paper, we prove that if a Pythagorean quadruple is known and one of its squares represents a Pythagorean triple, then the semi-prime is factorized. The problem of semi-prime factorization is reduced to the problem of finding only one such sum of three squares to factorize a semi-prime. We modify the Lebesgue identity as the sum of four squares to obtain four sums of three squares. These are then expressed as four Pythagorean quadruples. The Brahmagupta–Fibonacci identity reduces these four Pythagorean quadruples to two Pythagorean triples. The greatest common divisors of the sides contained therein are the factors of the semi-prime. We then prove that to factor a semi-prime, it is sufficient that only one of these Pythagorean quadruples be known. We provide the algorithm of our proposed semi-prime factorization method, highlighting its complexity and comparative advantage of the solution space with Fermat’s method. Our algorithm has the advantage when the factors of a semi-prime are congruent to 1 modulus 4. Illustrations of our method for real-world applications, such as factorization of the 768-bit number RSA-768, are established. Further, the computational viabilities, despite the mathematical constraints and the unexplored properties, are suggested as opportunities for future research.


2021 ◽  
Vol 1 (4) ◽  
pp. 638-659
Author(s):  
Faisal Quader ◽  
Vandana P. Janeja

This paper focuses on understanding the characteristics of multiple types of cyber-attacks through a comprehensive evaluation of case studies of real-world cyber-attacks. For each type of attack, we identify and link the attack type to the characteristics of that attack and the factors leading up to the attack, as observed from the review of case studies for that type of attack. We explored both the quantitative and qualitative characteristics for the types of attacks, including the type of industry, the financial intensity of the attack, non-financial intensity impacts, the number of impacted customers, and the impact on users’ trust and loyalty. In addition, we investigated the key factors leading up to an attack, including the human behavioral aspects; the organizational–cultural factors at play; the security policies adapted; the technology adoption and investment by the business; the training and awareness of all stakeholders, including users, customers and employees; and the investments in cybersecurity. In our study, we also analyzed how these factors are related to each other by evaluating the co-occurrence and linkage of factors to form graphs of connected frequent rules seen across the case studies. This study aims to help organizations take a proactive approach to the study of relevant cyber threats and aims to educate organizations to become more knowledgeable through lessons learned from other organizations experiencing cyber-attacks. Our findings indicate that the human behavioral aspects leading up to attacks are the weakest link in the successful prevention of cyber threats. We focus on human factors and discuss mitigation strategies.


2021 ◽  
Vol 1 (4) ◽  
pp. 615-637
Author(s):  
Kimia Ameri ◽  
Michael Hempel ◽  
Hamid Sharif ◽  
Juan Lopez ◽  
Kalyan Perumalla

We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional encoder representations from transformers and a key component in our semi-automated cybersecurity vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences from ICS device documentation collected across a wide range of vendors and devices. This corpus provides the foundation for fine-tuning BERT’s language model, including a prediction-guided relabeling process. We propose an approach to obtain optimal hyperparameters, including the learning rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier. Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization, training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during validation across 100 random seed values. Finally, we also compared the performance of CyBERT to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and accuracy as a cybersecurity feature claims classifier.


2021 ◽  
Vol 1 (4) ◽  
pp. 597-614
Author(s):  
Leah Krehling ◽  
Aleksander Essex

Contact tracing applications have flooded the marketplace, as governments worldwide have been working to release apps for their citizens. These apps use a variety of protocols to perform contact tracing, resulting in widely differing security and privacy assurances. Governments and users have been left without a standard metric to weigh these protocols and compare their assurances to know which are more private and secure. Although there are many ways to approach a quantitative metric for privacy and security, one natural way is to draw on the methodology used by the well-known common vulnerability scoring system (CVSS). For privacy, we applied consensus principles for contract tracing as a basis for comparing their relative privacy practices. For security, we performed attack modeling to develop a rubric to compare the security of respective apps. Our analysis shows that centralized Bluetooth with added location functionality has low privacy and security, while non-streaming GPS scored high in security and medium in privacy. Based on our methodology, only two apps were given a high ranking of privacy: Canada’s Covid Alert and Germany’s Corona Warn-App. They both used the Google/Apple Notification Framework as the basis for their design. To achieve comparable privacy, we recommend that future projects follow their examples in the following ways: minimizing the amount of data they collect and holding it for the shortest possible length of time; only having features necessary for the app’s main function; and releasing design details so that users can make informed decisions.


Sign in / Sign up

Export Citation Format

Share Document