"Abstract model of the Ternary Machine Signal Encoding"

2021 ◽  
Author(s):  
Ruslan Pozinkevych
1982 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
Bernd Reusch ◽  
Gerd Szwillus

We study a term-language, which is used by the “Warsaw-School” in an abstract model for information systems. Various normal forms as well as standard expansions with respect to product terms are formulated and proved correct. It is shown that the shortest sums of so-called maximal sub-products are the shortest representations of terms and algorithms for their generation are given.


Author(s):  
Daniel Auge ◽  
Julian Hille ◽  
Etienne Mueller ◽  
Alois Knoll

AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Kwang-il Hwang ◽  
Sung-wook Nam

In order to construct a successful Internet of things (IoT), reliable network construction and maintenance in a sensor domain should be supported. However, IEEE 802.15.4, which is the most representative wireless standard for IoT, still has problems in constructing a large-scale sensor network, such as beacon collision. To overcome some problems in IEEE 802.15.4, the 15.4e task group proposed various different modes of operation. Particularly, the IEEE 802.15.4e deterministic and synchronous multichannel extension (DSME) mode presents a novel scheduling model to solve beacon collision problems. However, the DSME model specified in the 15.4e draft does not present a concrete design model but a conceptual abstract model. Therefore, in this paper we introduce a DSME beacon scheduling model and present a concrete design model. Furthermore, validity and performance of DSME are evaluated through experiments. Based on experiment results, we analyze the problems and limitations of DSME, present solutions step by step, and finally propose an enhanced DSME beacon scheduling model. Through additional experiments, we prove the performance superiority of enhanced DSME.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maike Schwammberger

Abstract As automated driving techniques are increasingly capturing the market, it is particularly important to consider vital functional properties of these systems. We present an overview of an approach that uses an abstract model to logically reason about properties of autonomous manoeuvres at intersections in urban traffic. The approach introduces automotive-controlling timed automata crossing controllers that use the traffic logic UMLSL (Urban Multi-lane Spatial Logic) to reason about traffic situations. Safety in the context of collision freedom is mathematically proven. Liveness (something good finally happens) and fairness (no queue-jumping) are examined and verified using a model-checking tool for timed automata, UPPAAL.


Sign in / Sign up

Export Citation Format

Share Document