scholarly journals A Bauer–Furuta-type refinement of Kronheimer and Mrowka’s invariant for 4–manifolds with contact boundary

2021 ◽  
Vol 21 (7) ◽  
pp. 3303-3333
Author(s):  
Nobuo Iida
Keyword(s):  
2021 ◽  
Vol 11 (2) ◽  
pp. 779
Author(s):  
Dimitrios Dardalis ◽  
Amiyo Basu ◽  
Matt J. Hall ◽  
Ronald D. Mattthews

The Rotating Liner Engine (RLE) concept is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2–4 m/s in order to assist piston ring lubrication. Specifically, we have evidence from prior art and from our own research that the above rotation has the potential to eliminate the metal-to-metal contact/boundary friction that exists close to the piston reversal areas. This frictional source becomes a significant energy loss, especially in the compression/expansion part of the cycle, when the gas pressure that loads the piston rings and skirts is high. This paper describes the Diesel RLE prototype constructed from a Cummins 4BT and the preliminary observations from initial low load testing. The critical technical challenge, namely the rotating liner face seal, appears to be operating with negligible gas leakage and within the hydrodynamic lubrication regime for the loads tested (peak cylinder pressures of the order of 100 bar) and up to about 10 bar BMEP (brake mean effective pressure). Preliminary testing has proven that the metal-to-metal contact in the piston assembly mostly vanished, and a friction reduction at idle conditions of about 40% as extrapolated to a complete engine has taken place. It is expected that as the speed increases, the friction reduction percentage will diminish, but as the load increases, the friction reduction will increase. The fuel economy benefit over the US Heavy-Duty driving cycle will likely be of the order of 10% compared to a standard engine.


1998 ◽  
Vol 122 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Ningxin Chen

The presented paper utilizes the basic theory of the envelope surface in differential geometry to investigate the undercutting line, the contact boundary line and the limit normal point of conjugate surfaces in gearing. It is proved that (1) the edges of regression of the envelope surfaces are the undercutting line and the contact boundary line in theory of gearing respectively, and (2) the limit normal point is the common tangent point of the two edges of regression of the conjugate surfaces. New equations for the undercutting line, the contact boundary line and the limit normal point of the conjugate surfaces are developed based on the definition of the edges of regression. Numerical examples are taken for illustration of the above-mentioned concepts and equations. [S1050-0472(00)00104-5]


Author(s):  
V.G. Petushkov ◽  
M.I. Zotov ◽  
L.D. Dobrushin

Joining of metals in explosive welding takes place as a result of their plastic deformation during a high speed collision and is usually accompanied by typical formation of waves at the interface. In welding aluminium, the weld boundary can also be straight if the speed of the contact point is νc is ≤ 1900 m/s. These welding conditions make it possible to prevent melting of the metal at the interface and increase at the same time its corrosion resistance. In this article, the effect of the dynamic collision angle on the special features of plastic flow of the metal in the vicinity of the contact boundary in welding sheets of AS5 aluminium is described.


2020 ◽  
Vol 21 (3) ◽  
pp. 208-214
Author(s):  
Mathieu Gil-oulbé ◽  
Aleksey S. Markovich ◽  
Prosper Ngandu ◽  
Svetlana V. Anosova

From the old ancient types of roof and dome construction, various forms of shells have been discovered which attract special attention. A shell is a structure composed of sheet material so that the curvature plays an important role in the structural behaviour, realizing its spatial form. There are different types of shells, namely thick and thin shells. G. Brankov, S.N. Krivoshapko, V.N. Ivanov, and V.A. Romanova made interesting researches of shells in the form of umbrella and umbrella-type surfaces. The term nonlinear refers to a given structure undergoing a change in stiffness in its loaded state. There are basically three different types of nonlinearities: geometric, physical and contact (boundary condition nonlinearity). For further analysis of the stress-strain state, a paraboloid with an inner radius of 4 m and an outer radius of 20 m and the number of waves equal to 6 was considered. The test shell is made of reinforced concrete. The minimum load parameter at which the shell loses stability indicates a more than three times the margin.


2002 ◽  
Vol 752 ◽  
Author(s):  
Peter Lingenfelter ◽  
Tomasz Sokalski ◽  
Andrzej Lewenstam

ABSTRACTA numerical model is presented for analyzing the propagation of ionic concentrations and electrical potential in space and time in the solution ion-exchanging membrane system. Diffusion and migration according to the Nernst-Planck (NP) flux equation govern the transport of ions, and the electrical interaction of the species is described by the Poisson (P) equation. These two equations and the continuity equation form a system of partial non-linear differential equations that is solved numerically. As a result of the physicochemical properties of the system, both the contact/boundary potential and the diffusion potential contribute to the overall membrane potential. It is shown that interpreting the electrical potential of ion-exchanging membranes exclusively in terms of boundary potential at steady-state is incorrect. The Nernst-Planck-Poisson (NPP) model is general and applies to ions of any charge in space and time domains.


Sign in / Sign up

Export Citation Format

Share Document