scholarly journals S2f1-1 New spike sorting and multi-electrodes for sub-millisecond neuronal interactions in vivo(S2-f1: "Dynamism of the Brain States (I): Innovation of measurements of the living brain",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)

2006 ◽  
Vol 46 (supplement2) ◽  
pp. S124
Author(s):  
Susumu Takahashi
2021 ◽  
Vol 33 (5) ◽  
pp. 1372-1401
Author(s):  
Xi Liu ◽  
Xiang Shen ◽  
Shuhang Chen ◽  
Xiang Zhang ◽  
Yifan Huang ◽  
...  

Abstract Motor brain machine interfaces (BMIs) interpret neural activities from motor-related cortical areas in the brain into movement commands to control a prosthesis. As the subject adapts to control the neural prosthesis, the medial prefrontal cortex (mPFC), upstream of the primary motor cortex (M1), is heavily involved in reward-guided motor learning. Thus, considering mPFC and M1 functionality within a hierarchical structure could potentially improve the effectiveness of BMI decoding while subjects are learning. The commonly used Kalman decoding method with only one simple state model may not be able to represent the multiple brain states that evolve over time as well as along the neural pathway. In addition, the performance of Kalman decoders degenerates in heavy-tailed nongaussian noise, which is usually generated due to the nonlinear neural system or influences of movement-related noise in online neural recording. In this letter, we propose a hierarchical model to represent the brain states from multiple cortical areas that evolve along the neural pathway. We then introduce correntropy theory into the hierarchical structure to address the heavy-tailed noise existing in neural recordings. We test the proposed algorithm on in vivo recordings collected from the mPFC and M1 of two rats when the subjects were learning to perform a lever-pressing task. Compared with the classic Kalman filter, our results demonstrate better movement decoding performance due to the hierarchical structure that integrates the past failed trial information over multisite recording and the combination with correntropy criterion to deal with noisy heavy-tailed neural recordings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245589
Author(s):  
Masood Ul Hassan ◽  
Rakesh Veerabhadrappa ◽  
Asim Bhatti

Neural spike sorting is prerequisite to deciphering useful information from electrophysiological data recorded from the brain, in vitro and/or in vivo. Significant advancements in nanotechnology and nanofabrication has enabled neuroscientists and engineers to capture the electrophysiological activities of the brain at very high resolution, data rate and fidelity. However, the evolution in spike sorting algorithms to deal with the aforementioned technological advancement and capability to quantify higher density data sets is somewhat limited. Both supervised and unsupervised clustering algorithms do perform well when the data to quantify is small, however, their efficiency degrades with the increase in the data size in terms of processing time and quality of spike clusters being formed. This makes neural spike sorting an inefficient process to deal with large and dense electrophysiological data recorded from brain. The presented work aims to address this challenge by providing a novel data pre-processing framework, which can enhance the efficiency of the conventional spike sorting algorithms significantly. The proposed framework is validated by applying on ten widely used algorithms and six large feature sets. Feature sets are calculated by employing PCA and Haar wavelet features on three widely adopted large electrophysiological datasets for consistency during the clustering process. A MATLAB software of the proposed mechanism is also developed and provided to assist the researchers, active in this domain.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


Sign in / Sign up

Export Citation Format

Share Document